Machine-learning based VMAF prediction for HDR video content

被引:2
|
作者
Mueller, Christoph [1 ]
Steglich, Stephan [1 ]
Gross, Sandra [2 ]
Kremer, Paul [2 ]
机构
[1] Fraunhofer FOKUS, Berlin, Germany
[2] RTL Technol, Cologne, Germany
关键词
VMAF; video quality; HDR; neural networks; machine learning;
D O I
10.1145/3587819.3593941
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a methodology for predicting VMAF video quality scores for high dynamic range (HDR) video content using machine learning. To train the ML model, we are collecting a dataset of HDR and converted SDR video clips, as well as their corresponding objective video quality scores, specifically the Video Multimethod Assessment Fusion (VMAF) values. A 3D convolutional neural network (3D-CNN) model is being trained on the collected dataset. Finally, a hands-on demonstrator is developed to showcase the newly predicted HDR-VMAF metric in comparison to VMAF and other metric values for SDR content, and to conduct further validation with user testing.
引用
收藏
页码:328 / 332
页数:5
相关论文
共 50 条
  • [31] Prediction and Factor Analysis of Liquefaction Ground Subsidence Based on Machine-Learning Techniques
    Karimai, Kazuki
    Liu, Wen
    Maruyama, Yoshihisa
    APPLIED SCIENCES-BASEL, 2024, 14 (07):
  • [32] Machine-Learning Prediction of Underwater Shock Loading on Structures
    Zhang, Mou
    Drikakis, Dimitris
    Li, Lei
    Yan, Xiu
    COMPUTATION, 2019, 7 (04)
  • [33] An investigation on machine-learning models for the prediction of cyanobacteria growth
    Giere, Johannes
    Riley, Derek
    Nowling, R. J.
    McComack, Joshua
    Sander, Hedda
    FUNDAMENTAL AND APPLIED LIMNOLOGY, 2020, 194 (02) : 85 - 94
  • [34] Machine-Learning Applications in Structural Response Prediction: A Review
    Afshar, Aref
    Nouri, Gholamreza
    Ghazvineh, Shahin
    Hosseini Lavassani, Seyed Hossein
    PRACTICE PERIODICAL ON STRUCTURAL DESIGN AND CONSTRUCTION, 2024, 29 (03)
  • [35] Prediction of Hemolytic Toxicity for Saponins by Machine-Learning Methods
    Zheng, Suqing
    Wang, Yibing
    Liu, Hongmei
    Chang, Wenping
    Xu, Yong
    Lin, Fu
    CHEMICAL RESEARCH IN TOXICOLOGY, 2019, 32 (06) : 1014 - 1026
  • [36] Machine-learning techniques for the prediction of protein–protein interactions
    Debasree Sarkar
    Sudipto Saha
    Journal of Biosciences, 2019, 44
  • [37] Machine-learning models for prediction of sepsis patients mortality
    Bao, C.
    Deng, F.
    Zhao, S.
    MEDICINA INTENSIVA, 2023, 47 (06) : 315 - 325
  • [38] Energy landscapes for a machine-learning prediction of patient discharge
    Das, Ritankar
    Wales, David J.
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [39] Performance Prediction of NUMA Placement: a Machine-Learning Approach
    Arapidis, Fanourios
    Karakostas, Vasileios
    Papadopoulou, Nikela
    Nikas, Konstantinos
    Goumas, Georgios
    Koziris, Nectarios
    2018 16TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM 2018), 2018, : 296 - 301
  • [40] Representation of compounds for machine-learning prediction of physical properties
    Seko, Atsuto
    Hayashi, Hiroyuki
    Nakayama, Keita
    Takahashi, Akira
    Tanaka, Isao
    PHYSICAL REVIEW B, 2017, 95 (14)