Numerical behavior of the variable-order fractional Van der Pol oscillator

被引:3
|
作者
Ramroodi, N. [1 ]
Tehrani, H. Ahsani [1 ]
Skandari, M. H. Noori [1 ]
机构
[1] Shahrood Univ Technol, Fac Math Sci, Shahrood, Iran
关键词
Van der Pol oscillator; Variable-order fractional derivative; Lagrange interpolating polynomial; Legendre-Gauss-Lobatto points; DERIVATIVES;
D O I
10.1016/j.jocs.2023.102174
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we investigate the behavior of a Van der Pol oscillator based on the variable-order Caputo fractional derivatives. After variable-order fractional modeling, we discretize the obtained equations using the Legendre-Gauss-Lobatto points and employ Lagrange interpolating functions. An algebraic system is gained that approximates the variables and their fractional derivatives. Also, an approach is suggested to calculate the differentiation matrix related to the variable-order Caputo fractional derivative. Moreover, an algorithm is presented for solving the variable-order Caputo fractional Van der Pol equation on large time-interval. Numerical simulations are provided to represent the applicability of the suggested method and to see the treatment of variable-order Caputo fractional Van der Pol oscillator.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Time analysis of forced variable-order fractional Van der Pol oscillator
    Moghaddam, Behrouz Parsa
    Tenreiro Machado, Jose Antnio
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (16-18): : 3803 - 3810
  • [2] Time analysis of forced variable-order fractional Van der Pol oscillator
    Behrouz Parsa Moghaddam
    José António Tenreiro Machado
    The European Physical Journal Special Topics, 2017, 226 : 3803 - 3810
  • [3] Numerical scheme and dynamic analysis for variable-order fractional van der Pol model of nonlinear economic cycle
    Lei He
    Li Yi
    Pei Tang
    Advances in Difference Equations, 2016
  • [4] Numerical scheme and dynamic analysis for variable-order fractional van der Pol model of nonlinear economic cycle
    He, Lei
    Yi, Li
    Tang, Pei
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [5] Dynamics of the fractional-order Van der Pol oscillator
    Barbosa, RS
    Machado, JAT
    Ferreira, IM
    Tar, JK
    ICCC 2004: SECOND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL CYBERNETICS, PROCEEDINGS, 2004, : 373 - 378
  • [6] An algorithm for the numerical solution of nonlinear fractional-order Van der Pol oscillator equation
    Jafari, H.
    Khalique, C. M.
    Nazari, M.
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (5-6) : 1782 - 1786
  • [7] Analysis of fractional order Bonhoeffer-van der Pol oscillator
    Gafiychuk, V.
    Datsko, B.
    Meleshko, V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (2-3) : 418 - 424
  • [8] Stochastic response of fractional-order van der Pol oscillator
    Chen, Lincong
    Zhu, Weiqiu
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2014, 4 (01)
  • [9] Analysis of the van der pol oscillator containing derivatives of fractional order
    Barbosa, Ramiro S.
    Machado, J. A. Tenreiro
    Vinagre, B. M.
    Calderon, A. J.
    JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) : 1291 - 1301
  • [10] Primary resonance of fractional-order van der Pol oscillator
    Shen, Yong-Jun
    Wei, Peng
    Yang, Shao-Pu
    NONLINEAR DYNAMICS, 2014, 77 (04) : 1629 - 1642