Femtosecond laser micro-machining of three-dimensional surface profiles on flat single crystal sapphire

被引:2
作者
Ng, Chong-Kuong [1 ]
Chen, Chong [1 ]
Yang, Yong [1 ]
Zhang, Fan [1 ]
Ju, Bing-Feng [1 ,2 ]
Chen, Yuan-Liu [1 ,2 ]
机构
[1] Zhejiang Univ, State Key Lab Fluid Power & Mechatron Syst, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Hangzhou 311215, Peoples R China
基金
中国国家自然科学基金;
关键词
Femtosecond laser micro-machining; Single-crystal sapphire; Regression model; Machine learning; 3D surface profiles; FABRICATION; EFFICIENT; MICROSTRUCTURE; INSCRIPTION; ABLATION; QUALITY;
D O I
10.1016/j.optlastec.2023.110205
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this study, a regression model is proposed using the machine learning (ML) method for femtosecond laser micro-machining of three-dimensional (3D) surface profiles on flat single-crystal sapphire. Based on the ML regression model, a quantitative relationship is established between the femtosecond laser processing parameters and the processed 3D functional curved surface topography. The combination of laser processing parameters (i.e. laser fluence F0, hatch dh, and scanning speed v) is also optimized according to the predicted parameters (i.e. surface quality Ra, ablation depth Z, and material removal rate MRR). Finally, the optimized combination of laser processing parameters was employed to process 3D surface profiles on flat single-crystal sapphire sheets. The maximum predicted profile error of the 3D structures was approximately 12.6% without any prior optimization experiments. Both the numerical simulation and experimental results demonstrate the feasibility of the proposed ML regression model in optimizing laser processing parameter combinations to achieve the desired 3D surface geometries on single-crystal sapphire by femtosecond laser micro-machining without trial-and-error.
引用
收藏
页数:11
相关论文
共 48 条
  • [1] Aiello S, 2016, Machine learning with python and H2O
  • [2] Bärsch N, 2007, J LASER APPL, V19, P107, DOI 10.2351/1.2567454
  • [3] Piezoelectric RF MEMS Switches on Si-on-Sapphire Substrates
    Benoit, Robert R.
    Rudy, Ryan Q.
    Pulskamp, Jeffrey S.
    Polcawich, Ronald G.
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2020, 29 (05) : 1087 - 1090
  • [4] Fabrication of SiNx-based photonic crystals on GaN-based LED devices with patterned sapphire substrate by nanoimprint lithography
    Byeon, Kyeong-Jae
    Cho, Joong-Yeon
    Kim, Jinseung
    Park, Hyoungwon
    Lee, Heon
    [J]. OPTICS EXPRESS, 2012, 20 (10): : 11423 - 11432
  • [5] Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array
    Cao, Xiao-Wen
    Lu, Yi-Ming
    Fan, Hua
    Xia, Hong
    Zhang, Lei
    Zhang, Yong-Lai
    [J]. APPLIED OPTICS, 2018, 57 (32) : 9604 - 9608
  • [6] Towards obtaining high-quality surfaces with nanometric finish by femtosecond laser ablation: A case study on coppers
    Chen, Chong
    Ng, Chong Kuong
    Zhang, Fan
    Xiong, Xin
    Ju, Bing-Feng
    Zhang, Yang
    Hansen, Hans Norgaard
    Chen, Yuan-Liu
    [J]. OPTICS AND LASER TECHNOLOGY, 2022, 155
  • [7] Single-pulse femtosecond laser ablation of monocrystalline silicon: A modeling and experimental study
    Chen, Chong
    Zhang, Fan
    Zhang, Yang
    Xiong, Xin
    Ju, Bing-Feng
    Cui, Hailong
    Chen, Yuan Liu
    [J]. APPLIED SURFACE SCIENCE, 2022, 576
  • [8] Nanoimprint lithography
    Chou, SY
    Krauss, PR
    Renstrom, PJ
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (06): : 4129 - 4133
  • [9] Femtosecond laser fabrication of robust underwater superoleophobic and anti-oil surface on sapphire
    Chu, Dongkai
    Yin, Kai
    Dong, Xinran
    Luo, Zhi
    Duan, Ji-An
    [J]. AIP ADVANCES, 2017, 7 (11):
  • [10] Dobrovinskaya ER, 2009, MICRO- OPTO-ELECTRON, P1, DOI 10.1007/978-0-387-85695-7_1