BOUNDEDNESS OF SOLUTIONS TO SINGULAR ANISOTROPIC ELLIPTIC EQUATIONS

被引:6
作者
Brandolini, Barbara [1 ]
Cirstea, Florica C. [2 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2024年 / 17卷 / 04期
基金
澳大利亚研究理事会;
关键词
Anisotropic operator; boundary singularity; bounded solutions; BLOW-UP SOLUTIONS; GRADIENT TERM; EXISTENCE; UNIQUENESS;
D O I
10.3934/dcdss.2023190
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the uniform boundedness of all solutions for a generalclass of Dirichlet anisotropic elliptic problems of the form-triangle--> pu+ Phi 0(u,del u) = Psi(u,del u) +fin ohm, u= 0 on partial derivative ohm,where ohm subset of RN(N >= 2) is a bounded open set, triangle--> pu=& sum;Nj=1 partial derivative j(|partial derivative ju|pj-2 partial derivative ju)and Phi 0(u,del u) =(a0+& sum;Nj=1aj|partial derivative ju|pj)|u|m-2u, witha0>0,m,pj>1,aj >= 0 for 1 <= j <= NandN/p=& sum;Nk=1(1/pk)>1. We assume thatf is an element of Lr(ohm)withr > N/p. The feature of this study is the inclusion of a possibly singular gradient-dependent term Psi(u,del u) =& sum;Nj=1|u|theta j-2u|partial derivative ju|qj, where theta j>0 and0 <= qj< pjfor 1 <= j <= N. The existence of such weak solutions is contained in a recent paper by the authors.
引用
收藏
页码:1545 / 1561
页数:17
相关论文
共 29 条
[1]   Fully anisotropic elliptic problems with minimally integrable data [J].
Alberico, Angela ;
Chlebicka, Iwona ;
Cianchi, Andrea ;
Zatorska-Goldstein, Anna .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (06)
[2]  
[Anonymous], 1983, Res. Notes in Math.
[3]  
[Anonymous], 1996, Pitman Research Notes in Math. Series
[4]  
Antontsev S. N., 2002, Energy methods for free boundary problems: Applications to nonlinear PDEs and fluid mechanics, V48
[5]  
Antontsev S, 2006, HBK DIFF EQUAT STATI, V3, P1, DOI 10.1016/S1874-5733(06)80005-7
[6]  
Antontsev S, 2008, DIFFER INTEGRAL EQU, V21, P401
[7]   L-INFINITY ESTIMATE FOR SOME NONLINEAR ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS AND APPLICATION TO AN EXISTENCE RESULT [J].
BOCCARDO, L ;
MURAT, F ;
PUEL, JP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (02) :326-333
[8]   EXISTENCE OF BOUNDED SOLUTIONS FOR NON-LINEAR ELLIPTIC UNILATERAL PROBLEMS [J].
BOCCARDO, L ;
MURAT, F ;
PUEL, JP .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 152 :183-196
[9]   Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term [J].
Boccardo, L ;
De León, SS ;
Trombetti, C .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (09) :919-940
[10]   Singular anisotropic elliptic equations with gradient-dependent lower order terms [J].
Brandolini, Barbara ;
Cirstea, Florica C. C. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (05)