Integrated multi-omics analyses and genome-wide association studies reveal prime candidate genes of metabolic and vegetative growth variation in canola

被引:1
作者
Knoch, Dominic [1 ]
Meyer, Rhonda C. [1 ]
Heuermann, Marc C. [1 ]
Riewe, David [1 ,2 ]
Peleke, Fritz F. [1 ]
Szymanski, Jedrzej [1 ,3 ]
Abbadi, Amine [4 ,5 ]
Snowdon, Rod J. [6 ]
Altmann, Thomas [1 ]
机构
[1] Leibniz Inst Plant Genet & Crop Plant Res IPK, Dept Mol Genet, Corrensstr 3, D-06466 Gatersleben, Germany
[2] Julius Kuhn Inst JKI, Inst Ecol Chem Plant Anal & Stored Prod Protect, Fed Res Ctr Cultivated Plants, D-14195 Berlin, Germany
[3] Forschungszentrum Julich, Inst Bio & Geosci Bioinformat IBG 4, D-52428 Julich, Germany
[4] NPZ Innovat GmbH, D-24363 Hohenlieth, Holtsee, Germany
[5] Norddeutsche Pflanzenzucht Hans Georg Lembke KG, D-24363 Holtsee, Germany
[6] Justus Liebig Univ Giessen, Res Ctr Biosyst Land Use & Nutr IFZ, Dept Plant Breeding, D-35392 Giessen, Germany
关键词
Brassica napus; biomass; GWAS; high-throughput phenotyping; metabolomics; transcriptomics; MITOCHONDRIAL COMPLEX I; QUANTITATIVE TRAIT LOCI; BRASSICA-NAPUS; BIOCONDUCTOR PACKAGE; PLANT DEVELOPMENT; ARABIDOPSIS; EXPRESSION; YIELD; RESPONSES; RAPESEED;
D O I
10.1111/tpj.16524
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Genome-wide association studies (GWAS) identified thousands of genetic loci associated with complex plant traits, including many traits of agronomical importance. However, functional interpretation of GWAS results remains challenging because of large candidate regions due to linkage disequilibrium. High-throughput omics technologies, such as genomics, transcriptomics, proteomics and metabolomics open new avenues for integrative systems biological analyses and help to nominate systems information supported (prime) candidate genes. In the present study, we capitalise on a diverse canola population with 477 spring-type lines which was previously analysed by high-throughput phenotyping of growth-related traits and by RNA sequencing and metabolite profiling for multi-omics-based hybrid performance prediction. We deepened the phenotypic data analysis, now providing 123 time-resolved image-based traits, to gain insight into the complex relations during early vegetative growth and reanalysed the transcriptome data based on the latest Darmor-bzh v10 genome assembly. Genome-wide association testing revealed 61 298 robust quantitative trait loci (QTL) including 187 metabolite QTL, 56814 expression QTL and 4297 phenotypic QTL, many clustered in pronounced hotspots. Combining information about QTL colocalisation across omics layers and correlations between omics features allowed us to discover prime candidate genes for metabolic and vegetative growth variation. Prioritised candidate genes for early biomass accumulation include A06p05760.1_BnaDAR (PIAL1), A10p16280.1_BnaDAR, C07p48260.1_BnaDAR (PRL1) and C07p48510.1_BnaDAR (CLPR4). Moreover, we observed unequal effects of the Brassica A and C subgenomes on early biomass production.
引用
收藏
页码:713 / 728
页数:16
相关论文
共 114 条
  • [1] Photoprotection during iron deficiency is mediated by the bHLH transcription factors PYE and ILR3
    Akmakjian, Garo Z.
    Riaz, Nabila
    Guerinot, Mary Lou
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (40)
  • [2] Alexa A., 2023, topGO: Enrichment Analysis for Gene Ontology
  • [3] Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato
    Alonge, Michael
    Wang, Xingang
    Benoit, Matthias
    Soyk, Sebastian
    Pereira, Lara
    Zhang, Lei
    Suresh, Hamsini
    Ramakrishnan, Srividya
    Maumus, Florian
    Ciren, Danielle
    Levy, Yuval
    Harel, Tom Hai
    Shalev-Schlosser, Gili
    Amsellem, Ziva
    Razifard, Hamid
    Caicedo, Ana L.
    Tieman, Denise M.
    Klee, Harry
    Kirsche, Melanie
    Aganezov, Sergey
    Ranallo-Benavidez, T. Rhyker
    Lemmon, Zachary H.
    Kim, Jennifer
    Robitaille, Gina
    Kramer, Melissa
    Goodwin, Sara
    McCombie, W. Richard
    Hutton, Samuel
    Van Eck, Joyce
    Gillis, Jesse
    Eshed, Yuval
    Sedlazeck, Fritz J.
    van der Knaap, Esther
    Schatz, Michael C.
    Lippman, Zachary B.
    [J]. CELL, 2020, 182 (01) : 145 - +
  • [4] HTSeq-a Python']Python framework to work with high-throughput sequencing data
    Anders, Simon
    Pyl, Paul Theodor
    Huber, Wolfgang
    [J]. BIOINFORMATICS, 2015, 31 (02) : 166 - 169
  • [5] The cell biology of lignification in higher plants
    Barros, Jaime
    Serk, Henrik
    Granlund, Irene
    Pesquet, Edouard
    [J]. ANNALS OF BOTANY, 2015, 115 (07) : 1053 - 1074
  • [6] Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.)
    Basunanda, P.
    Radoev, M.
    Ecke, W.
    Friedt, W.
    Becker, H. C.
    Snowdon, R. J.
    [J]. THEORETICAL AND APPLIED GENETICS, 2010, 120 (02) : 271 - 281
  • [7] Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps
    Belser, Caroline
    Istace, Benjamin
    Denis, Erwan
    Dubarry, Marion
    Baurens, Franc-Christophe
    Falentin, Cyril
    Genete, Mathieu
    Berrabah, Wahiba
    Chevre, Anne-Marie
    Delourme, Regine
    Deniot, Gwenaelle
    Denoeud, France
    Duffe, Philippe
    Engelen, Stefan
    Lemainque, Arnaud
    Manzanares-Dauleux, Maria
    Martin, Guillaume
    Morice, Jerome
    Noel, Benjamin
    Vekemans, Xavier
    D'Hont, Angelique
    Rousseau-Gueutin, Mathieu
    Barbe, Valerie
    Cruaud, Corinne
    Wincker, Patrick
    Aury, Jean-Marc
    [J]. NATURE PLANTS, 2018, 4 (11) : 879 - +
  • [8] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [9] Trimmomatic: a flexible trimmer for Illumina sequence data
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BIOINFORMATICS, 2014, 30 (15) : 2114 - 2120
  • [10] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32