Multi-label borderline oversampling technique

被引:10
|
作者
Teng, Zeyu [1 ]
Cao, Peng [2 ,3 ]
Huang, Min [1 ]
Gao, Zheming [1 ]
Wang, Xingwei [2 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
[2] Northeastern Univ, Coll Comp Sci & Engn, Shenyang 110169, Liaoning, Peoples R China
[3] Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang 110169, Liaoning, Peoples R China
关键词
Multi-label learning; Class imbalance; Borderline sample; Oversampling; CLASSIFICATION; IMBALANCE; RANKING; MACHINE; SMOTE;
D O I
10.1016/j.patcog.2023.109953
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Class imbalance problem commonly exists in multi-label classification (MLC) tasks. It has non-negligible im-pacts on the classifier performance and has drawn extensive attention in recent years. Borderline oversampling has been widely used in single-label learning as a competitive technique in dealing with class imbalance. Nevertheless, the borderline samples in multi-label data sets (MLDs) have not been studied. Hence, this paper deeply discussed the borderline samples in MLDs and found they have different neighboring relationships with class borders, which makes their roles different in the classifier training. For that, they are divided into two types named the self-borderline samples and the cross-borderline samples. Further, a novel MLDs resampling approach called Multi-Label Borderline Oversampling Technique (MLBOTE) is proposed for multi -label imbalanced learning. MLBOTE identifies three types of seed samples, including interior, self-borderline, and cross-borderline samples, and different oversampling mechanisms are designed for them, respectively. Meanwhile, it regards not only the minority classes but also the classes suffering from one-vs-rest imbalance as those in need of oversampling. Experiments on eight data sets with nine MLC algorithms and three base classifiers are carried out to compare MLBOTE with some state-of-art MLDs resampling techniques. The results show MLBOTE outperforms other methods in various scenarios.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] An efficient multi-label support vector machine with a zero label
    Xu, Jianhua
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (05) : 4796 - 4804
  • [42] Label Clustering for a Novel Problem Transformation in Multi-label Classification
    Sellah, Small
    Hilaire, Vincent
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2020, 26 (01) : 71 - 88
  • [43] Multi-label feature selection with global and local label correlation
    Faraji, Mohammad
    Seyedi, Seyed Amjad
    Tab, Fardin Akhlaghian
    Mahmoodi, Reza
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 246
  • [44] Prototype selection for multi-label data based on label correlation
    Li, Haikun
    Fang, Min
    Li, Hang
    Wang, Peng
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (05) : 2121 - 2130
  • [45] Multi-Label learning in the independent label sub-spaces
    Barezi, Elham J.
    Kwok, James T.
    Rabiee, Hamid R.
    PATTERN RECOGNITION LETTERS, 2017, 97 : 8 - 12
  • [46] Multi-label learning with label-specific feature reduction
    Xu, Suping
    Yang, Xibei
    Yu, Hualong
    Yu, Dong-Jun
    Yang, Jingyu
    Tsang, Eric C. C.
    KNOWLEDGE-BASED SYSTEMS, 2016, 104 : 52 - 61
  • [47] Multi-label classification with weak labels by learning label correlation and label regularization
    Xiaowan Ji
    Anhui Tan
    Wei-Zhi Wu
    Shenming Gu
    Applied Intelligence, 2023, 53 : 20110 - 20133
  • [48] Multi-label learning with label-specific features by resolving label correlations
    Zhang, Jia
    Li, Candong
    Cao, Donglin
    Lin, Yaojin
    Su, Songzhi
    Dai, Liang
    Li, Shaozi
    KNOWLEDGE-BASED SYSTEMS, 2018, 159 : 148 - 157
  • [49] Multi-label Feature Selection Techniques for Hierarchical Multi-label Protein Function Prediction
    Cerri, Ricardo
    Mantovani, Rafael G.
    Basgalupp, Marcio P.
    de Carvalho, Andre C. P. L. F.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [50] Multi-label learning with multi-label smoothing regularization for vehicle re-identification
    Hou, Jinhui
    Zeng, Huanqiang
    Cai, Lei
    Zhu, Jianqing
    Chen, Jing
    Ma, Kai-Kuang
    NEUROCOMPUTING, 2019, 345 : 15 - 22