Neural-network-augmented projection-based model order reduction for mitigating the Kolmogorov barrier to reducibility

被引:24
作者
Barnett, Joshua [1 ]
Farhat, Charbel [1 ,2 ,3 ]
Maday, Yvon [4 ,5 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
[3] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[4] Sorbonne Univ, Lab Jacques Louis LJLL L, F-75005 Paris, France
[5] Univ Paris Cite, CNRS, F-75005 Paris, France
关键词
Artificial neural network; Burgers; Kolmogorov n-width; Machine learning; Model reduction; Petrov-Galerkin; INTERPOLATION METHOD; HYPER REDUCTION; DECOMPOSITION;
D O I
10.1016/j.jcp.2023.112420
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Inspired by our previous work on a quadratic approximation manifold [1], we propose in this paper a computationally tractable approach for combining a projection-based reduced-order model (PROM) and an artificial neural network (ANN) to mitigate the Kolmogorov barrier to reducibility of parametric and/or highly nonlinear, high-dimensional, physics-based models. The main objective of our PROM-ANN concept is to reduce the dimensionality of the online approximation of the solution beyond what is achievable using affine and quadratic approximation manifolds, while maintaining accuracy. In contrast to previous approaches that exploited one form or another of an ANN, the training of the ANN part of our PROM-ANN does not involve data whose dimension scales with that of the high-dimensional model; and the resulting PROM-ANN can be efficiently hyperreduced using any well-established hyperreduction method. Hence, unlike many other ANN-based model order reduction approaches, the PROM-ANN concept we propose in this paper should be practical for large-scale and industry-relevant computational problems. We demonstrate the computational tractability of its offline stage and the superior wall clock time performance of its online stage for a large-scale, parametric, two-dimensional, model problem that is representative of shock-dominated unsteady flow problems.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 43 条
[1]   A long short-term memory embedding for hybrid uplifted reduced order models [J].
Ahmed, Shady E. ;
San, Omer ;
Rasheed, Adil ;
Iliescu, Traian .
PHYSICA D-NONLINEAR PHENOMENA, 2020, 409
[2]   Interpolation method for adapting reduced-order models and application to aeroelasticity [J].
Amsallem, David ;
Farhat, Charbel .
AIAA JOURNAL, 2008, 46 (07) :1803-1813
[3]   Nonlinear model order reduction based on local reduced-order bases [J].
Amsallem, David ;
Zahr, Matthew J. ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 92 (10) :891-916
[4]   Quadratic approximation manifold for mitigating the Kolmogorov barrier in nonlinear projection-based model order reduction [J].
Barnett, Joshua ;
Farhat, Charbel .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 464
[5]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[6]   Projection-based model reduction with dynamically transformed modes [J].
Black, Felix ;
Schulze, Philipp ;
Unger, Benjamin .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2020, 54 (06) :2011-2043
[7]  
Cagniart N., 2018, CONTRIBUTIONS PARTIA, DOI [10.1007/978, DOI 10.1007/978, 10.1007/978-3-319-78325-310, DOI 10.1007/978-3-319-78325-3_10]
[8]   The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows [J].
Carlberg, Kevin ;
Farhat, Charbel ;
Cortial, Julien ;
Amsallem, David .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 :623-647
[9]   Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations [J].
Carlberg, Kevin ;
Bou-Mosleh, Charbel ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 86 (02) :155-181
[10]   Accelerated mesh sampling for the hyper reduction of nonlinear computational models [J].
Chapman, Todd ;
Avery, Philip ;
Collins, Pat ;
Farhat, Charbel .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (12) :1623-1654