Creep Characterization of Inconel 718 Lattice Metamaterials Manufactured by Laser Powder Bed Fusion

被引:5
|
作者
Bhuwal, Akash Singh [1 ]
Pang, Yong [1 ,2 ]
Maskery, Ian [3 ]
Ashcroft, Ian [3 ]
Sun, Wei [1 ]
Liu, Tao [1 ,2 ]
机构
[1] Univ Nottingham, Fac Engn, Univ Pk, Nottingham NG7 2RD, England
[2] Queen Mary Univ London, Sch Engn & Mat Sci, Mile End Rd, London E1 4NS, England
[3] Univ Nottingham, Fac Engn, Ctr Addit Mfg, Nottingham NG7 2RD, Notts, England
关键词
additives manufacturing; creeps; Inconel; 718; lattice metamaterials; microstructures; BEHAVIOR; DESIGN; PREDICTION; FAILURE;
D O I
10.1002/adem.202300643
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lattice metamaterials manufactured by laser powder bed fusion (LPBF) are limited by their performance for critical applications. LPBF materials have microstructural or macroscale anomalies, such as suboptimal grain size, morphology, and lack of fusion. This results in LPBF metamaterials performance degradation for various mechanical properties, such as creep, which has seldom been researched. To understand the creep behavior of LPBF Inconel 718, body-centered cubic metamaterials are fabricated for creep test at 650 & DEG;C. Kachanov's damage modeling is used to predict the creep performance of the metamaterials under different loading conditions. Microstructural characterization is performed with scanning electron microscopy to identify critical microstructure defects affecting the failure mechanisms and creep behaviors of the metamaterials. It is shown in the results that the loading conditions affect the fracture process of the metamaterials owing to different failure mechanisms. In the simulation and test results, the logarithmic decline in creep life is shown when loading increases; also, logarithmic increase in the creep life is shown when relative density increases. Herein, the creep characteristics of additively manufactured Inconel 718 metamaterials are investigated. The creep behavior of metamaterials and the effects of microstructural defects are assessed, and the microstructure defects are accurately captured using Kachanov's creep damage model. In addition, the leading causes of specimen failure and the effects of loading and relative density on creep life are examined.image & COPY; 2023 WILEY-VCH GmbH
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Creep behaviour of inconel 718 processed by laser powder bed fusion
    Xu, Zhengkai
    Hyde, C. J.
    Tuck, C.
    Clare, A. T.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 256 : 13 - 24
  • [2] The creep behaviour of nickel alloy 718 manufactured by laser powder bed fusion
    Sanchez, S.
    Gaspard, G.
    Hyde, C. J.
    Ashcroft, I. A.
    Ravi, G. A.
    Clare, A. T.
    MATERIALS & DESIGN, 2021, 204
  • [3] Review of the Microstructural Impact on Creep Mechanisms and Performance for Laser Powder Bed Fusion Inconel 718
    Bryndza, Guillian
    Tchuindjang, Jerome Tchoufang
    Chen, Fan
    Habraken, Anne Marie
    Sepulveda, Hector
    Tuninetti, Victor
    Mertens, Anne
    Duchene, Laurent
    MATERIALS, 2025, 18 (02)
  • [4] Design guidelines for laser powder bed fusion in Inconel 718
    Herzog, Dirk
    Asami, Karim
    Scholl, Christoph
    Ohle, Christoph
    Emmelmann, Claus
    Sharma, Ashish
    Markovic, Nick
    Harris, Andy
    JOURNAL OF LASER APPLICATIONS, 2022, 34 (01)
  • [5] An investigation of the plastic work to heat conversion of wrought and laser powder bed fusion manufactured Inconel 718
    Varga, John
    Kingstedt, Owen T.
    ADDITIVE MANUFACTURING, 2021, 46
  • [6] Effect of current density on electrochemical machining process of laser powder bed fusion manufactured Inconel 718
    Guo, Pengfei
    Martin, Andre
    Zhai, Changshuai
    Li, Zuo
    Lu, Xufei
    Yu, Jun
    Lin, Xin
    Odnevall, Inger
    Gibbons, Michael
    Schubert, Andreas
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2025, 337
  • [7] Role of the γ " precipitation at the cell boundaries in enhancing the creep resistance of additively manufactured Inconel 718 alloy using the laser powder bed fusion technique
    Liu, Fei
    Radhakrishnan, Jayaraj
    Pavan, A. H. V.
    Ramamurty, Upadrasta
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 916
  • [8] Laser shock peening as a post-processing technique for Inconel 718 components manufactured by laser powder bed fusion
    J. Antonio Banderas-Hernández
    Carlos Rubio-González
    Arturo Gómez-Ortega
    Santiago Flores-García
    Carlos Elí Martínez-Pérez
    The International Journal of Advanced Manufacturing Technology, 2024, 132 : 669 - 687
  • [9] Effect of powder reuse on tensile, compressive, and creep strength of Inconel 718 fabricated via laser powder bed fusion
    Bhowmik, Shubhrodev
    McWilliams, Brandon A.
    Knezevic, Marko
    MATERIALS CHARACTERIZATION, 2022, 190
  • [10] Laser shock peening as a post-processing technique for Inconel 718 components manufactured by laser powder bed fusion
    Banderas-Hernandez, J. Antonio
    Rubio-Gonzalez, Carlos
    Gomez-Ortega, Arturo
    Flores-Garcia, Santiago
    Martinez-Perez, Carlos Eli
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 132 (1-2): : 669 - 687