The Essential Spectrum of a Three Particle Schrodinger Operator on Lattices

被引:5
作者
Lakaev, S. N. [1 ]
Boltaev, A. T. [2 ]
机构
[1] Samarkand State Univ, Samarkand 140104, Uzbekistan
[2] Acad Sci Uzbek, Romanovskii Inst Math, Tashkent 100174, Uzbekistan
关键词
Schrodinger operator; three-particle; Hamiltonian; essential spectrum; eigenvalue; boson; lattice; channel operator; SHRODINGER OPERATOR; BOUND-STATES; NUMBER; EIGENVALUES;
D O I
10.1134/S1995080223030198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Hamiltonian H-mu lambda, mu, lambda is an element of R of a system of three-particles (two identical bosons and one different particle) moving on the lattice Zd, d = 1, 2 interacting through zero-range pairwise potentials mu not equal 0 and lambda not equal 0. The essential spectrum of the three-particle discrete Schrodinger operator H-mu lambda(K), K is an element of T-d, being the three-particle quasi-momentum, is described by means of the spectrumof non-perturbed three-particle operator H-0(K) and the two-particle discrete Schrodinger operator h(mu)(k), h(lambda,gamma)(k), k is an element of T-d, gamma > 0. It is established that the essential spectrum of the three-particle discrete Schrodinger operator H-mu lambda(K), K is an element of T-d consists of no more than three bounded closed intervals.
引用
收藏
页码:1176 / 1187
页数:12
相关论文
共 35 条
[1]   Invariant Subspaces of the Shrodinger Operator with a Finite Support Potential [J].
Abdullaev, J., I ;
Toshturdiev, A. M. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (03) :728-737
[2]  
Albeverio S, 2004, ANN HENRI POINCARE, V5, P743, DOI [10.1007/S00023-004-0181-9, 10.1007/s00023-004-0181-9]
[3]  
Albeverio S, 2012, MARKOV PROCESS RELAT, V18, P387
[4]   On the structure of the essential spectrum for the three-particle Schrodinger operators on lattices [J].
Albeverio, Sergio ;
Lakaev, Saidakhmat N. ;
Muminov, Zahriddin I. .
MATHEMATISCHE NACHRICHTEN, 2007, 280 (07) :699-716
[5]   Bounds on the discrete spectrum of lattice Schrodinger operators [J].
Bach, V. ;
de Siqueira Pedra, W. ;
Lakaev, S. N. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
[6]   On the Number of Eigenvalues of the Lattice Model Operator in One-Dimensional Case [J].
Bozorov, I. N. ;
Khurramov, A. M. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (02) :353-365
[7]   NOTE ON HUNZIKERS THEOREM [J].
ENSS, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 52 (03) :233-238
[8]  
Faddeev L.D., 1965, Mathematical Aspects of the Three-body Problem in the Quantum Scattering Theory
[9]  
Faddeev L. D., 1993, Quantum Scattering Theory for Several Particle Systems, P398
[10]  
Graf G. M., 1997, Theor, V67, P91