Optofluidic force induction as a process analytical technology

被引:3
作者
Simic, Marko [1 ,2 ,3 ]
Neuper, Christian [1 ,4 ]
Hohenester, Ulrich [2 ]
Hill, Christian [1 ,3 ]
机构
[1] Brave Analyt GmbH, Stiftingtalstr 14, A-8010 Graz, Styria, Austria
[2] Karl Franzens Univ Graz, Inst Phys, Univ Pl 5, A-8010 Graz, Styria, Austria
[3] Med Univ Graz, Gottfried Schatz Res Ctr, Div Med Phys & Biophys, Neue Stiftingtalstr 2, A-8010 Graz, Styria, Austria
[4] Graz Ctr Electron Microscopy, Steyrergasse 17, A-8010 Graz, Styria, Austria
基金
欧盟地平线“2020”;
关键词
Nanoparticle characterization; Optical forces; Real-time monitoring; Process analytical technology; LIGHT;
D O I
10.1007/s00216-023-04796-3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Manufacturers of nanoparticle-based products rely on detailed information about critical process parameters, such as particle size and size distributions, concentration, and material composition, which directly reflect the quality of the final product. These process parameters are often obtained using offline characterization techniques that cannot provide the temporal resolution to detect dynamic changes in particle ensembles during a production process. To overcome this deficiency, we have recently introduced Optofluidic Force Induction (of2i) for optical real-time counting with single particle sensitivity and high throughput. In this paper, we apply of2i to highly polydisperse and multi modal particle systems, where we also monitor evolutionary processes over large time scales. For oil-in-water emulsions we detect in real time the transition between high-pressure homogenization states. For silicon carbide nanoparticles, we exploit the dynamic of2i measurement capabilities to introduce a novel process feedback parameter based on the dissociation of particle agglomerates. Our results demonstrate that of2i provides a versatile workbench for process feedback in a wide range of applications.
引用
收藏
页码:5181 / 5191
页数:11
相关论文
共 24 条
  • [1] A comparative study of submicron particle sizing platforms: Accuracy, precision and resolution analysis of polydisperse particle size distributions
    Anderson, Will
    Kozak, Darby
    Coleman, Victoria A.
    Jaemting, Asa K.
    Trau, Matt
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2013, 405 : 322 - 330
  • [2] [Anonymous], 2016, 181962016 ISOTR
  • [3] ACCELERATION AND TRAPPING OF PARTICLES BY RADIATION PRESSURE
    ASHKIN, A
    [J]. PHYSICAL REVIEW LETTERS, 1970, 24 (04) : 156 - &
  • [4] Burgess Diane J, 2004, AAPS J, V6, pe20
  • [5] Optical tweezers in single-molecule biophysics
    Bustamante, Carlos J.
    Chemla, Yann R.
    Liu, Shixin
    Wang, Michelle D.
    [J]. NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [6] Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation
    Butaite, Une G.
    Gibson, Graham M.
    Ho, Ying-Lung D.
    Taverne, Mike
    Taylor, Jonathan M.
    Phillips, David B.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Light-induced rotations of chiral birefringent microparticles in optical tweezers
    Donato, M. G.
    Mazzulla, A.
    Pagliusi, P.
    Magazzu, A.
    Hernandez, R. J.
    Provenzano, C.
    Gucciardi, P. G.
    Marago, O. M.
    Cipparrone, G.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [9] PARTICLE SIZING BY QUASI-ELASTIC LIGHT-SCATTERING
    FINSY, R
    [J]. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1994, 52 : 79 - 143
  • [10] Nanotechnology in Cosmetics and Cosmeceuticals-A Review of Latest Advancements
    Gupta, Vaibhav
    Mohapatra, Sradhanjali
    Mishra, Harshita
    Farooq, Uzma
    Kumar, Keshav
    Ansari, Mohammad Javed
    Aldawsari, Mohammed F.
    Alalaiwe, Ahmed S.
    Mirza, Mohd Aamir
    Iqbal, Zeenat
    [J]. GELS, 2022, 8 (03)