QTL mapping for pre-harvest sprouting in a recombinant inbred line population of elite wheat varieties Zhongmai 578 and Jimai 22

被引:6
作者
Shawai, Rabiu Sani [1 ,2 ]
Liu, Dan [1 ]
Li, Lingli [1 ]
Chen, Tiantian [1 ]
Li, Ming [1 ]
Cao, Shuanghe [1 ]
Xia, Xianchun [1 ]
Liu, Jindong [1 ]
He, Zhonghu [1 ,3 ]
Zhang, Yong [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Crop Sci, Natl Wheat Improvement Ctr, Beijing 100081, Peoples R China
[2] Kano Univ Sci & Technol Wudil, Fac Agr & Agr Technol, Dept Crop Sci, Kano 713281, Nigeria
[3] China Off, Int Maize & Wheat Improvement Ctr CIMMYT, CAAS, Beijing 100081, Peoples R China
来源
CROP JOURNAL | 2023年 / 11卷 / 03期
基金
中国国家自然科学基金;
关键词
Pre-harvest sprouting; Germination index; Quantitative trait loci; KASP marker; Triticum aestivum L; QUANTITATIVE TRAIT LOCI; SEED DORMANCY; CHROMOSOME; 3A; GRAIN COLOR; RESISTANCE; TOLERANCE; GENES; ARABIDOPSIS; HOMOLOG; CLONING;
D O I
10.1016/j.cj.2022.12.001
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Pre-harvest sprouting (PHS) is one of the serious global issues in wheat production. Identification of quantitative trait loci (QTL) and closely-linked markers is greatly helpful for wheat improvement. In the present study, a recombinant inbred line (RIL) population derived from the cross of Zhongmai 578 (ZM578)/Jimai 22 (JM22) and parents were phenotyped in five environments and genotyped by the wheat 50 K single-nucleotide polymorphism (SNP) array. Two QTL of germination index (GI), QGI.caas3A and QGI.caas-5A, were detected, explaining 4.33%-5.58% and 4.43%-8.02% of the phenotypic variances, respectively. The resistant effect of QGI.caas-3A was contributed by JM22, whereas that of QGI.caas.5A was from ZM578. The two QTL did not correspond to any previously identified genes or genetic loci for PHSrelated traits according to their locations in the Chinese Spring reference genome, indicating that they are likely to be new loci for PHS resistance. Four kompetitive allele-specific PCR (KASP) markers K_AX109605367and K_AX-179559687 flanking QGI.caas-3A, and K_AX-111258240 and K_AX-109402944 flanking QGI.caas-5A, were developed and validated in a natural population of 100 wheat cultivars. The distribution frequency of resistance alleles at Qphs.caas-3A and Qphs.caas-5A loci were 82.7% and 57.1%, respectively, in the natural population. These findings provide new QTL and tightly linked KASP markers for improvement of PHS resistance in wheat. & COPY; 2022 Crop Science Society of China and Institute of Crop Sciences, CAAS Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
引用
收藏
页码:863 / 869
页数:7
相关论文
共 50 条
[41]   Genome-wide association mapping and genomic prediction for pre-harvest sprouting resistance, low α-amylase and seed color in Iranian bread wheat [J].
Rabieyan, Ehsan ;
Bihamta, Mohammad Reza ;
Moghaddam, Mohsen Esmaeilzadeh ;
Mohammadi, Valiollah ;
Alipour, Hadi .
BMC PLANT BIOLOGY, 2022, 22 (01)
[42]   Genome-Wide QTL Mapping for Wheat Processing Quality Parameters in a Gaocheng 8901/Zhoumai 16 Recombinant Inbred Line Population [J].
Jin, Hui ;
Wen, Weie ;
Liu, Jindong ;
Zhai, Shengnan ;
Zhang, Yan ;
Yan, Jun ;
Liu, Zhiyong ;
Xia, Xianchun ;
He, Zhonghu .
FRONTIERS IN PLANT SCIENCE, 2016, 7
[43]   Mapping quantitative trait loci controlling pre-harvest sprouting resistance in a red x white seeded spring wheat cross [J].
Fofana, B. ;
Humphreys, D. G. ;
Rasul, G. ;
Cloutier, S. ;
Brule-Babel, A. ;
Woods, S. ;
Lukow, O. M. ;
Somers, D. J. .
EUPHYTICA, 2009, 165 (03) :509-521
[44]   Mapping QTLs for pre-harvest sprouting tolerance on chromosome 2D in a synthetic hexaploid wheat×common wheat cross [J].
Ren Xiao-bo ;
Lan Xiu-jin ;
Liu Deng-cai ;
Wang Jia-li ;
Zheng You-liang .
Journal of Applied Genetics, 2008, 49 (4) :333-341
[45]   A major falling number locus on chromosome 4B governs resistance to pre-harvest sprouting in bread wheat line Soru#1 [J].
Khosravizad, Beyayna Vahramians ;
Ruud, Anja Karine ;
Belova, Tatiana ;
Windju, Susanne S. ;
Dieseth, Jon Arne ;
Yang, Ennian ;
Lillemo, Morten .
EUPHYTICA, 2024, 220 (11)
[46]   QTL mapping and candidate gene identification of lint percentage based on a recombinant inbred line population of upland cotton [J].
Wang, Hantao ;
Jia, Xiaoyun ;
Kang, Meng ;
Li, Wei ;
Fu, Xiaokang ;
Ma, Liang ;
Lu, Jianhua ;
Wei, Hengling ;
Yu, Shuxun .
EUPHYTICA, 2021, 217 (06)
[47]   QTL Mapping of Zeaxanthin Content in Sweet Corn Using Recombinant Inbred Line Population across Different Environments [J].
Zhang, Yahui ;
Tang, Yunqi ;
Jin, Weicai ;
Liu, Yu ;
Li, Guangyu ;
Zhong, Wenhao ;
Huang, Jun ;
Wang, Wenyi .
PLANTS-BASEL, 2023, 12 (19)
[48]   Mapping QTLs for pre-harvest sprouting tolerance on chromosome 2D in a synthetic hexaploid wheatxcommon wheat cross [J].
Ren Xiao-bo ;
Lan Xiu-jin ;
Liu Deng-cai ;
Wang Jia-li ;
Zheng You-liang .
JOURNAL OF APPLIED GENETICS, 2008, 49 (04) :333-341
[49]   Mapping quantitative trait loci controlling pre-harvest sprouting resistance in a red × white seeded spring wheat cross [J].
B. Fofana ;
D. G. Humphreys ;
G. Rasul ;
S. Cloutier ;
A. Brûlé-Babel ;
S. Woods ;
O. M. Lukow ;
D. J. Somers .
Euphytica, 2009, 165 :509-521
[50]   Registration of the Louise-Penawawa spring wheat recombinant inbred line mapping population [J].
Carter, A. H. ;
Kidwell, K. K. ;
DeMacon, V. L. ;
Shelton, G. B. ;
Burke, A. B. ;
Balow, K. A. ;
Herr, A. .
JOURNAL OF PLANT REGISTRATIONS, 2020, 14 (03) :474-480