Efficient single-grid and multi-grid solvers for real-space orbital-free density functional theory

被引:2
|
作者
Bu, Ling-Ze [1 ,2 ]
Wang, Wei [2 ,3 ,4 ]
机构
[1] Harbin Univ Sci & Technol, Sch Architecture & Civil Engn, Dept Engn Mech, Harbin 150080, Peoples R China
[2] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Peoples R China
[4] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disaste, Harbin 150090, Peoples R China
关键词
Orbital-free density functional theory; Real-space methods; Analytical Poisson solver; Improved bisection method; Multi-grid method; FORMULATION;
D O I
10.1016/j.cpc.2023.108778
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To improve the computational efficiencies of the real-space orbital-free density functional theory, this work develops a new single-grid solver by directly providing the closed-form solution to the inner iteration and using an improved bisection method to accelerate the line search process in the outer iteration, and extended the single-grid solver to a multi-grid solver. Numerical examples show that while maintaining high level of accuracy, the proposed single-grid solver can improve the computational efficiencies by two orders of magnitude comparing with the methods in the literature (For example, the ground state energy of a 45 x 45 x 45 FCC Aluminum cluster (376786 atoms) can be computed within 4h27min on a desktop computer.) and the multi-grid solver can improve the computational efficiencies even once for the cases where high-resolution electron densities are needed.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 31 条
  • [1] ATLAS: A real-space finite-difference implementation of orbital-free density functional theory
    Mi, Wenhui
    Shao, Xuecheng
    Su, Chuanxun
    Zhou, Yuanyuan
    Zhang, Shoutao
    Li, Quan
    Wang, Hui
    Zhang, Lijun
    Miao, Maosheng
    Wang, Yanchao
    Ma, Yanming
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 200 : 87 - 95
  • [2] Incremental solver for orbital-free density functional theory
    Rousse, Francois
    Redon, Stephane
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2019, 40 (23) : 2013 - 2027
  • [3] CONUNDrum: A program for orbital-free density functional theory calculations
    Golub, Pavlo
    Manzhos, Sergei
    COMPUTER PHYSICS COMMUNICATIONS, 2020, 256
  • [5] Leveraging normalizing flows for orbital-free density functional theory
    de Camargo, Alexandre
    Chen, Ricky T. Q.
    Vargas-Hernandez, Rodrigo A.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):
  • [6] Equilibrium Bond Lengths from Orbital-Free Density Functional Theory
    Finzel, Kati
    MOLECULES, 2020, 25 (08):
  • [7] Describing metal surfaces and nanostructures with orbital-free density functional theory
    Ho, Gregory S.
    Huang, Chen
    Carter, Emily A.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2007, 11 (5-6) : 57 - 61
  • [8] Detailed analysis of deformation potentials with application in orbital-free density functional theory
    Finzel, Kati
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2021, 77 : 458 - 466
  • [9] Mechanical Response of Aluminum Nanowires via Orbital-Free Density Functional Theory
    Ho, Gregory S.
    Carter, Emily A.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (06) : 1236 - 1246
  • [10] Non-nested multi-grid solvers for mixed divergence-free Scott–Vogelius discretizations
    Alexander Linke
    Gunar Matthies
    Lutz Tobiska
    Computing, 2008, 83 : 87 - 107