Automated high-throughput image processing as part of the screening platform for personalized oncology

被引:1
|
作者
Schilling, Marcel P. [1 ]
El Faraj, Razan El Khaled [2 ]
Gomez, Joaquin Eduardo Urrutia [2 ]
Sonnentag, Steffen J. [2 ]
Wang, Fei [3 ]
Nestler, Britta [3 ]
Orian-Rousseau, Veronique [2 ]
Popova, Anna A. [2 ]
Levkin, Pavel A. [2 ]
Reischl, Markus [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Automat & Appl Informat, D-76344 Eggenstein Leopoldshafen, Germany
[2] Karlsruhe Inst Technol, Inst Biol & Chem Syst Funct Mol Syst, D-76344 Eggenstein Leopoldshafen, Germany
[3] Karlsruhe Inst Technol, Inst Appl Mat, D-76131 Karlsruhe, Germany
关键词
D O I
10.1038/s41598-023-32144-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer is a devastating disease and the second leading cause of death worldwide. However, the development of resistance to current therapies is making cancer treatment more difficult. Combining the multi-omics data of individual tumors with information on their in-vitro Drug Sensitivity and Resistance Test (DSRT) can help to determine the appropriate therapy for each patient. Miniaturized high-throughput technologies, such as the droplet microarray, enable personalized oncology. We are developing a platform that incorporates DSRT profiling workflows from minute amounts of cellular material and reagents. Experimental results often rely on image-based readout techniques, where images are often constructed in grid-like structures with heterogeneous image processing targets. However, manual image analysis is time-consuming, not reproducible, and impossible for high-throughput experiments due to the amount of data generated. Therefore, automated image processing solutions are an essential component of a screening platform for personalized oncology. We present our comprehensive concept that considers assisted image annotation, algorithms for image processing of grid-like high-throughput experiments, and enhanced learning processes. In addition, the concept includes the deployment of processing pipelines. Details of the computation and implementation are presented. In particular, we outline solutions for linking automated image processing for personalized oncology with high-performance computing. Finally, we demonstrate the advantages of our proposal, using image data from heterogeneous practical experiments and challenges.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Automated Microfluidic Platform for High-Throughput Biosensor Development
    Devrani, Shitanshu
    Tietze, Daniel
    Tietze, Alesia A.
    ADVANCED SENSOR RESEARCH, 2025, 4 (03):
  • [22] BioImageXD: an open, general-purpose and high-throughput image-processing platform
    Pasi Kankaanpää
    Lassi Paavolainen
    Silja Tiitta
    Mikko Karjalainen
    Joacim Päivärinne
    Jonna Nieminen
    Varpu Marjomäki
    Jyrki Heino
    Daniel J White
    Nature Methods, 2012, 9 (7) : 683 - 689
  • [23] BioImageXD: an open, general-purpose and high-throughput image-processing platform
    Kankaanpaa, Pasi
    Paavolainen, Lassi
    Tiitta, Silja
    Karjalainen, Mikko
    Paivarinne, Joacim
    Nieminen, Jonna
    Marjomaki, Varpu
    Heino, Jyrki
    White, Daniel J.
    NATURE METHODS, 2012, 9 (07) : 683 - 689
  • [24] High-Throughput Transcriptomics Platform for Screening Environmental Chemicals
    Harrill, Joshua A.
    Everett, Logan J.
    Haggard, Derik E.
    Sheffield, Thomas
    Bundy, Joseph L.
    Willis, Clinton M.
    Thomas, Russell S.
    Shah, Imran
    Judson, Richard S.
    TOXICOLOGICAL SCIENCES, 2021, 181 (01) : 68 - 89
  • [25] High-throughput cultivation and screening platform for unicellular phototrophs
    Ulrich M Tillich
    Nick Wolter
    Katja Schulze
    Dan Kramer
    Oliver Brödel
    Marcus Frohme
    BMC Microbiology, 14
  • [26] Miniaturized platform for high-throughput screening of stem cells
    Tronser, Tina
    Popova, Anna A.
    Levkin, Pavel A.
    CURRENT OPINION IN BIOTECHNOLOGY, 2017, 46 : 141 - 149
  • [27] High-throughput cultivation and screening platform for unicellular phototrophs
    Tillich, Ulrich M.
    Wolter, Nick
    Schulze, Katja
    Kramer, Dan
    Broedel, Oliver
    Frohme, Marcus
    BMC MICROBIOLOGY, 2014, 14
  • [28] Microfluidic Platform for High-Throughput Screening of Leach Chemistry
    Yang, Die
    Priest, Craig
    ANALYTICAL CHEMISTRY, 2018, 90 (14) : 8517 - 8522
  • [29] High-throughput and automated screening for COVID-19
    Jonguitud-Borrego, Nestor
    Malci, Koray
    Anand, Mihir
    Baluku, Erikan
    Webb, Calum
    Liang, Lungang
    Barba-Ostria, Carlos
    Guaman, Linda P.
    Hui, Liu
    Rios-Solis, Leonardo
    FRONTIERS IN MEDICAL TECHNOLOGY, 2022, 4
  • [30] Personalized Oncology Through Integrative High-Throughput Sequencing: A Pilot Study
    Roychowdhury, Sameek
    Iyer, Matthew K.
    Robinson, Dan R.
    Lonigro, Robert J.
    Wu, Yi-Mi
    Cao, Xuhong
    Kalyana-Sundaram, Shanker
    Sam, Lee
    Balbin, O. Alejandro
    Quist, Michael J.
    Barrette, Terrence
    Everett, Jessica
    Siddiqui, Javed
    Kunju, Lakshmi P.
    Navone, Nora
    Araujo, John C.
    Troncoso, Patricia
    Logothetis, Christopher J.
    Innis, Jeffrey W.
    Smith, David C.
    Lao, Christopher D.
    Kim, Scott Y.
    Roberts, J. Scott
    Gruber, Stephen B.
    Pienta, Kenneth J.
    Talpaz, Moshe
    Chinnaiyan, Arul M.
    SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (111)