Spatial-Spectral Decoupling Framework for Hyperspectral Image Classification

被引:3
|
作者
Fang, Jie [1 ]
Zhu, Zhijie [1 ]
He, Guanghua [1 ]
Wang, Nan [2 ]
Cao, Xiaoqian [3 ]
机构
[1] Univ Posts & Telecommun, Sch Telecommun & Informat Engn, Xian 710121, Shaanxi, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Shaanxi Univ Sci & Technol, Sch Elect & Control Engn, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Encoding; Feature extraction; Collaboration; Convolutional neural networks; Training; Data preprocessing; Band selection (BS); collaborative decision-making; hyperspectral image classification; spatial-spectral decoupling (SD); NETWORK; CNN;
D O I
10.1109/LGRS.2023.3277347
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a spatial-spectral decoupling framework (SDF) to improve the performance of hyperspectral image classification, it mainly contains three modules, including data preprocessing, feature representation, and collaborative decision-making. Specifically, the data preprocessing module based on band selection (BS) network can effectively emphasize useful spectral bands while suppressing redundant ones. Besides, the feature representation module is based on spatial-spectral decoupling (SD) network to avoid information confusion between the spatial and the spectral domains. In addition, the collaborative decision-making mechanism based on joint optimization can maintain the discriminative properties of different branches and enhance mutual facilitation among them. Finally, the experimental results validate the effectiveness and superiority of our SDF.
引用
收藏
页数:5
相关论文
共 50 条
  • [11] Pyramid Hierarchical Spatial-Spectral Transformer for Hyperspectral Image Classification
    Ahmad, Muhammad
    Butt, Muhammad Hassaan Farooq
    Mazzara, Manuel
    Distefano, Salvatore
    Khan, Adil Mehmood
    Altuwaijri, Hamad Ahmed
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 17681 - 17689
  • [12] SSUM: Spatial-Spectral Unified Mamba for Hyperspectral Image Classification
    Lu, Song
    Zhang, Min
    Huo, Yu
    Wang, Chenhao
    Wang, Jingwen
    Gao, Chenyu
    REMOTE SENSING, 2024, 16 (24)
  • [13] CLASSIFICATION OF HYPERSPECTRAL IMAGE VIA SPATIAL-SPECTRAL MANIFOLD RECONSTRUCTION
    Yang, Yaqiong
    Huang, Hong
    Luo, Fulin
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2442 - 2445
  • [14] Semisupervised classification for hyperspectral image based on spatial-spectral clustering
    Wang, Liguo
    Yang, Yueshuang
    Liu, Danfeng
    JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [15] Hybrid Multiscale Spatial-Spectral Transformer for Hyperspectral Image Classification
    He, Yan
    Tu, Bing
    Liu, Bo
    Chen, Yunyun
    Li, Jun
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [16] Spatial-spectral ant colony optimization for hyperspectral image classification
    Sharma, Shakti
    Buddhiraju, Krishna Mohan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2018, 39 (09) : 2702 - 2717
  • [17] Adaptive Spatial-Spectral Feature Learning for Hyperspectral Image Classification
    Li, Simin
    Zhu, Xueyu
    Liu, Yang
    Bao, Jie
    IEEE ACCESS, 2019, 7 : 61534 - 61547
  • [18] Spatial-Spectral Kernel Sparse Representation for Hyperspectral Image Classification
    Liu, Jianjun
    Wu, Zebin
    Wei, Zhihui
    Xiao, Liang
    Sun, Le
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (06) : 2462 - 2471
  • [19] SPATIAL-SPECTRAL MULTIPLE KERNEL LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Gu, Yanfeng
    Feng, Kai
    Wang, Hong
    2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2013,
  • [20] HYPERSPECTRAL IMAGE CLASSIFICATION USING HIERARCHICAL SPATIAL-SPECTRAL TRANSFORMER
    Song, Chao
    Mei, Shaohui
    Ma, Mingyang
    Xu, Fulin
    Zhang, Yifan
    Du, Qian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3584 - 3587