Measurement of Dielectric Loss in Silicon Nitride at Centimeter and Millimeter Wavelengths

被引:1
作者
Pan, Z. [1 ]
Barry, P. S. [2 ]
Cecil, T. [1 ]
Albert, C. [3 ,4 ]
Bender, A. N. [1 ]
Chang, C. L. [3 ,5 ]
Gualtieri, R. [1 ]
Hood, J. [3 ]
Li, J. [1 ]
Zhang, J. [1 ]
Lisovenko, M. [1 ]
Novosad, V. [1 ]
Wang, G.
Yefremenko, V.
机构
[1] Argonne Natl Lab, Lemont, IL 60439 USA
[2] Cardiff Univ, Cardiff CF10 3AT, Wales
[3] Univ Chicago, Chicago, IL 91125 USA
[4] Caltech, Pasadena, CA 91125 USA
[5] Argonne Natl Lab, Argonne, IL 60439 USA
关键词
Dielectrics loss; silicon nitride (SiNx); millimeter wavelength; two-level system (TLS); quality factor;
D O I
10.1109/TASC.2023.3264953
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work presents a suite of measurement techniques for characterizing the dielectric loss tangent across a wide frequency range from similar to 1 GHz to 150 GHz using the same test chip. In the first method, we fit data from a microwave resonator at different temperatures to a model that captures the two-level system (TLS) response to extract and characterize both the real and imaginary components of the dielectric loss. The inverse of the internal quality factor is a second measure of the overall loss of the resonator, where TLS loss through the dielectric material is typically the dominant source. The third technique is a differential optical measurement at 150 GHz. The same antenna feeds two microstrip lines with different lengths that terminate in two microwave kinetic inductance detectors (MKIDs). The difference in the detector response is used to estimate the loss per unit length of the microstrip line. Our results suggest a larger loss for SiNx at 150 GHz of tan delta similar to 4 x 10(-3) compared to 2.0 x 10(-3) and greater than or similar to 1 x 10(-3) measured at similar to 1 GHz using the other two methods. These measurement techniques can be applied to other dielectrics by adjusting the microstrip lengths to provide enough optical efficiency contrast and other mm/sub-mm frequency ranges by tuning the antenna and feedhorn accordingly.
引用
收藏
页数:7
相关论文
共 22 条
  • [1] Abitbol M. H., 2017, FERMILABFN1034AE FNA
  • [2] ANOMALOUS LOW-TEMPERATURE THERMAL PROPERTIES OF GLASSES AND SPIN GLASSES
    ANDERSON, PW
    HALPERIN, BI
    VARMA, CM
    [J]. PHILOSOPHICAL MAGAZINE, 1972, 25 (01): : 1 - &
  • [3] Noise and sensitivity of aluminum kinetic inductance detectors for sub-mm astronomy
    Baselmans, J.
    Yates, S. J. C.
    Barends, R.
    Lankwarden, Y. J. Y.
    Gao, J. R.
    Hoevers, H.
    Klapwijk, T. M.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 151 (1-2) : 524 - 529
  • [4] Buijtendorp B., 2021, PHYS REV APPL, V18
  • [5] Hydrogenated Amorphous Silicon Carbide: A Low-Loss Deposited Dielectric for Microwave to Submillimeter-Wave Superconducting Circuits
    Buijtendorp, B. T.
    Vollebregt, S.
    Karatsu, K.
    Thoen, D. J.
    Murugesan, V.
    Kouwenhoven, K.
    Hahnle, S.
    Baselmans, J. J. A.
    Endo, A.
    [J]. PHYSICAL REVIEW APPLIED, 2022, 18 (06)
  • [6] Number Fluctuations of Sparse Quasiparticles in a Superconductor
    de Visser, P. J.
    Baselmans, J. J. A.
    Diener, P.
    Yates, S. J. C.
    Endo, A.
    Klapwijk, T. M.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (16)
  • [7] Defrance F., 2022, PROC SPIE
  • [8] On-chip filter bank spectroscopy at 600-700 GHz using NbTiN superconducting resonators
    Endo, A.
    Sfiligoj, C.
    Yates, S. J. C.
    Baselmans, J. J. A.
    Thoen, D. J.
    Javadzadeh, S. M. H.
    van der Werf, P. P.
    Baryshev, A. M.
    Klapwijk, T. M.
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (03)
  • [9] Equivalence of the effects on the complex conductivity of superconductor due to temperature change and external pair breaking
    Gao, J.
    Zmuidzinas, J.
    Vayonakis, A.
    Day, P.
    Mazin, B.
    Leduc, H.
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 151 (1-2) : 557 - 563
  • [10] Gao J., 2008, THESIS CALIFORNIA I