High-performance MnO/N-rGO catalyst for half-cell and Zn-air batteries by photochemically assisted synthesis

被引:8
|
作者
Sun, Chenghong [1 ,2 ]
Zhu, Enze [1 ,2 ]
Shi, Chaoyang [1 ,2 ]
Yu, Juan [3 ]
Yin, Shubiao [1 ]
Liu, Chunxia [4 ]
Cui, Xiaoying [4 ]
Liu, Weiping [3 ]
Xu, Mingli [1 ,2 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Peoples R China
[2] Natl & Local Joint Engn Lab Lithium Ion Batteries, Kunming 650093, Peoples R China
[3] Kunming Inst Precious Met, Kunming 650106, Peoples R China
[4] Kunming Univ Sci & Technol, Res Ctr Anal & Measurement, Kunming 650093, Peoples R China
基金
中国国家自然科学基金;
关键词
Photochemical reduction; MnO; Synergistic effect; ORR catalysts; OXYGEN REDUCTION; ELECTROCATALYSTS; GRAPHENE; OXIDE; NANOPARTICLES; PYROLYSIS; IMPACT; LAYERS;
D O I
10.1016/j.ceramint.2022.12.279
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The vigorous development of efficient cathode-side oxygen reduction reaction (ORR) catalysts is one of the keys to the practical application of fuel cells and Zn-air batteries (ZABs). Herein, a facile and green photochemical method is developed to synthesize pure-phase Mn3O4 nanoparticles, which are uniformly anchored on nitrogen -doped reduced graphene oxide (N-rGO), followed by simple one-step annealing to highly catalytical active and stable MnO/N-rGO. The resultant MnO/N-rGO exhibits exciting ORR performance in alkaline media. Particu-larly, both GDE (gas diffusion electrode) half-cell and ZABs assembled from MnO/N-rGO have excellent overall performance and outstanding long-term durability, obviously better than Pt/C-based GDE half-cell and Pt/C + RuO2-based ZABs, respectively. It is mainly attributed to the synergistic effect between MnO nanoparticles and N-rGO support, which significantly increases the active sites and facilitates 4-electron transfer. This research paves a way for the green photochemical synthesis of transition metal oxide ORR catalysts at room temperature.
引用
收藏
页码:13972 / 13981
页数:10
相关论文
共 50 条
  • [31] Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries
    Jing-Jing Chen
    Shuai Gu
    Rui Hao
    Zhen-Yu Wang
    Mu-Qing Li
    Zhi-Qiang Li
    Kun Liu
    Ke-Meng Liao
    Zhi-Qiang Wang
    He Huang
    Ying-Zhi Li
    Kai-Li Zhang
    Zhou-Guang Lu
    RareMetals, 2022, 41 (06) : 2055 - 2062
  • [32] Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries
    Jing-Jing Chen
    Shuai Gu
    Rui Hao
    Zhen-Yu Wang
    Mu-Qing Li
    Zhi-Qiang Li
    Kun Liu
    Ke-Meng Liao
    Zhi-Qiang Wang
    He Huang
    Ying-Zhi Li
    Kai-Li Zhang
    Zhou-Guang Lu
    Rare Metals, 2022, 41 : 2055 - 2062
  • [33] Tellurium intervened Fe-N codoped carbon for improved oxygen reduction reaction and high-performance Zn-air batteries
    Wang, Rui
    Meng, Zihan
    Yan, Xuemin
    Tian, Tian
    Lei, Ming
    Pashameah, Rami Adel
    Abo-Dief, Hala M.
    Algadi, Hassan
    Huang, Nina
    Guo, Zhanhu
    Tang, Haolin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 137 : 215 - 222
  • [34] Cu-N-C assisted MnO nanorods as bifunctional electrocatalysts for superior long-cycle Zn-air batteries
    Ruan, Yanli
    Lei, Haikuo
    Xue, Wenjuan
    Wang, Tianyu
    Song, Shidong
    Xu, Hang
    Yu, Yangyang
    Zhang, Gui-Rong
    Mei, Donghai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 934
  • [35] N-doped 3D hierarchical carbon from water hyacinth for high-performance Zn-air batteries
    Shi, Kejian
    Li, Yang
    Zhang, Yanyan
    Li, Xiaofei
    Zhu, Zijian
    Xu, Haiyu
    Zheng, Lingcheng
    Gao, Juan
    DIAMOND AND RELATED MATERIALS, 2023, 135
  • [36] FeCo nanoclusters inserted N,S -doped carbon foams as bifunctional electrocatalyst for high-performance rechargeable Zn-air batteries
    Wang, Minghui
    Wang, Hui
    Ren, Jianwei
    Wang, Xuyun
    Wang, Rongfang
    JOURNAL OF POWER SOURCES, 2022, 538
  • [37] Improving the electron transfer in the oxygen reduction reaction by N/S co-doping for high-performance of Zn-air batteries
    Wei, Jiawei
    Li, Ping
    Shi, Jing
    Huang, Minghua
    Tian, Weiqian
    Wang, Huanlei
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (14): : 3383 - 3393
  • [38] Design principles of non-noble metal catalysts for high-performance rechargeable Zn-air batteries
    Liu, Pengxiang
    Wang, Yaqian
    Lv, Ruijun
    Zhang, Guangying
    Liu, Xu
    Wang, Lei
    ENERGY STORAGE MATERIALS, 2025, 76
  • [39] Microwave-Assisted Synthesis of Highly Active Single-Atom Fe/N/C Catalysts for High-Performance Aqueous and Flexible All-Solid-State Zn-Air Batteries
    Han, Yi
    Wei, Qiliang
    Fu, Yanqing
    Zhang, Dongdong
    Li, Pan
    Shan, Xiaofeng
    Yang, Hongli
    Zhan, Xiaoqiang
    Liu, Xincai
    Yang, Weiyou
    SMALL, 2023, 19 (32)
  • [40] Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries
    Chen, Si
    Zhao, Lanling
    Ma, Jizhen
    Wang, Yueqing
    Dai, Liming
    Zhang, Jintao
    NANO ENERGY, 2019, 60 : 536 - 544