Incomplete Multi-View Clustering With Reconstructed Views

被引:55
|
作者
Yin, Jun [1 ]
Sun, Shiliang [2 ]
机构
[1] Shanghai Mari time Univ, Coll Informat Engn, Shanghai 201306, Peoples R China
[2] East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Kernel; Clustering methods; Laplace equations; Clustering algorithms; Image reconstruction; Sun; Linear programming; Multi-view clustering; incomplete view; reconstructed view; gradient descent; nonnegative matrix factorization;
D O I
10.1109/TKDE.2021.3112114
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As one category of important incomplete multi-view clustering methods, subspace based methods seek the common latent representation of incomplete multi-view data by matrix factorization and then partition the latent representation to get clustering results. However, these methods ignore missing views in the process of matrix factorization, which makes the connection of different views be exploited inadequately. This paper proposes Incomplete Multi-view Clustering with Reconstructed Views (IMCRV), which utilizes the incomplete examples sufficiently. In IMCRV, the missing views of incomplete examples are reconstructed and the reconstructed views are also used to seek the common latent representation. IMCRV also involves the Laplacian regularization to preserve the global property of the latent representation. The gradient descent method with the multiplicative update rule is employed to solve the objective function of IMCRV. The corresponding iterative algorithm is developed and the convergence of the algorithm is proved. IMCRV is compared with many state-of-the-art incomplete multi-view clustering methods under different Incomplete Example Rates (IER) on public multi-view datasets. The experimental results demonstrate the superior effectiveness of IMCRV.
引用
收藏
页码:2671 / 2682
页数:12
相关论文
共 50 条
  • [41] Incomplete Multi-view Clustering Based on Self-representation
    Jun Yin
    Jianwei Jiang
    Neural Processing Letters, 2023, 55 : 8673 - 8687
  • [42] Deep embedding based tensor incomplete multi-view clustering
    Song, Peng
    Liu, Zhaohu
    Mu, Jinshuai
    Cheng, Yuanbo
    DIGITAL SIGNAL PROCESSING, 2024, 151
  • [43] Feature Space Recovery for Efficient Incomplete Multi-View Clustering
    Long, Zhen
    Zhu, Ce
    Comon, Pierre
    Ren, Yazhou
    Liu, Yipeng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (09) : 4664 - 4677
  • [44] Incomplete multi-view clustering with partially mapped instances and clusters
    Zong, Linlin
    Miao, Faqiang
    Zhang, Xianchao
    Liu, Xinyue
    Yu, Hong
    KNOWLEDGE-BASED SYSTEMS, 2021, 212
  • [45] Robust Tensor Subspace Learning for Incomplete Multi-View Clustering
    Liang, Cheng
    Wang, Daoyuan
    Zhang, Huaxiang
    Zhang, Shichao
    Guo, Fei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6934 - 6948
  • [46] Adaptive Graph Completion Based Incomplete Multi-View Clustering
    Wen, Jie
    Yan, Ke
    Zhang, Zheng
    Xu, Yong
    Wang, Junqian
    Fei, Lunke
    Zhang, Bob
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 2493 - 2504
  • [47] A novel consensus learning approach to incomplete multi-view clustering
    Liu, Jianlun
    Teng, Shaohua
    Fei, Lunke
    Zhang, Wei
    Fang, Xiaozhao
    Zhang, Zhuxiu
    Wu, Naiqi
    PATTERN RECOGNITION, 2021, 115
  • [48] Semantic Invariant Multi-View Clustering With Fully Incomplete Information
    Zeng, Pengxin
    Yang, Mouxing
    Lu, Yiding
    Zhang, Changqing
    Hu, Peng
    Peng, Xi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (04) : 2139 - 2150
  • [49] Multi-view Clustering: A Survey
    Yan Yang
    Hao Wang
    Big Data Mining and Analytics, 2018, 1 (02) : 83 - 107
  • [50] Multi-view Clustering: A Survey
    Yang, Yan
    Wang, Hao
    BIG DATA MINING AND ANALYTICS, 2018, 1 (02) : 83 - 107