Incomplete Multi-View Clustering With Reconstructed Views

被引:55
|
作者
Yin, Jun [1 ]
Sun, Shiliang [2 ]
机构
[1] Shanghai Mari time Univ, Coll Informat Engn, Shanghai 201306, Peoples R China
[2] East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Kernel; Clustering methods; Laplace equations; Clustering algorithms; Image reconstruction; Sun; Linear programming; Multi-view clustering; incomplete view; reconstructed view; gradient descent; nonnegative matrix factorization;
D O I
10.1109/TKDE.2021.3112114
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As one category of important incomplete multi-view clustering methods, subspace based methods seek the common latent representation of incomplete multi-view data by matrix factorization and then partition the latent representation to get clustering results. However, these methods ignore missing views in the process of matrix factorization, which makes the connection of different views be exploited inadequately. This paper proposes Incomplete Multi-view Clustering with Reconstructed Views (IMCRV), which utilizes the incomplete examples sufficiently. In IMCRV, the missing views of incomplete examples are reconstructed and the reconstructed views are also used to seek the common latent representation. IMCRV also involves the Laplacian regularization to preserve the global property of the latent representation. The gradient descent method with the multiplicative update rule is employed to solve the objective function of IMCRV. The corresponding iterative algorithm is developed and the convergence of the algorithm is proved. IMCRV is compared with many state-of-the-art incomplete multi-view clustering methods under different Incomplete Example Rates (IER) on public multi-view datasets. The experimental results demonstrate the superior effectiveness of IMCRV.
引用
收藏
页码:2671 / 2682
页数:12
相关论文
共 50 条
  • [31] Incomplete multi-view clustering via diffusion completion
    Fang, Sifan
    Yang, Zuyuan
    Chen, Junhang
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 55889 - 55902
  • [32] Consensus Graph Learning for Incomplete Multi-view Clustering
    Zhou, Wei
    Wang, Hao
    Yang, Yan
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 529 - 540
  • [33] Incomplete Multi-view Clustering via Graph Regularized Matrix Factorization
    Wen, Jie
    Zhang, Zheng
    Xu, Yong
    Zhong, Zuofeng
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT IV, 2019, 11132 : 593 - 608
  • [34] Consistent Multiple Graph Embedding for Multi-View Clustering
    Wang, Yiming
    Chang, Dongxia
    Fu, Zhiqiang
    Zhao, Yao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1008 - 1018
  • [35] Multi-view Fuzzy Clustering with Weighted Attributes and Views
    Gothania, Neelesh
    Kumar, Sunil
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS), 2018, : 353 - 359
  • [36] Robust Joint Graph Learning for Multi-View Clustering
    He, Yanfang
    Yusof, Umi Kalsom
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 722 - 734
  • [37] Tensor Low-Rank Graph Embedding and Learning for One-Step Incomplete Multi-View Clustering
    Wan, Minghua
    Zhu, Jingyu
    Sun, Chengli
    Yang, Zhangjing
    Yin, Jun
    Yang, Guowei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9763 - 9775
  • [38] Multi-View Attributed Graph Clustering
    Lin, Zhiping
    Kang, Zhao
    Zhang, Lizong
    Tian, Ling
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 1872 - 1880
  • [39] Multi-View Comprehensive Graph Clustering
    Mei, Yanying
    Ren, Zhenwen
    Wu, Bin
    Yang, Tao
    Shao, Yanhua
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3279 - 3288
  • [40] Self-Weighted Graph-Based Framework for Multi-View Clustering
    He, Yanfang
    Yusof, Umi Kalsom
    IEEE ACCESS, 2023, 11 : 30197 - 30207