Nonnegative nontrivial solutions for a class of p(x)-Kirchhoff equation involving concave-convex nonlinearities

被引:0
作者
Chu, Changmu [1 ]
He, Zhongju [1 ]
机构
[1] Guizhou Minzu Univ, Sch Data Sci & Informat Engn, Guiyang 550025, Guizhou, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2023年 / 2023卷 / 01期
基金
中国国家自然科学基金;
关键词
p(x)-Kirchhoff problem; Degenerate elliptic equation; Concave-convex nonlinearities; Perturbation technique; Variational methods; EXISTENCE; MULTIPLICITY;
D O I
10.1186/s13661-023-01719-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of a class of p(x)-Kirchhoff equation involving concave-convex nonlinearities. The main tools used are the perturbation technique, variational method, and a priori estimation.
引用
收藏
页数:18
相关论文
共 50 条
[41]   Multiple solutions for a critical fractional elliptic system involving concave-convex nonlinearities [J].
Chen, Wenjing ;
Deng, Shengbing .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (06) :1167-1193
[42]   EXISTENCE OF SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN EQUATIONS INVOLVING A CONCAVE-CONVEX NONLINEARITY WITH CRITICAL GROWTH IN RN [J].
Alves, Claudianor O. ;
Ferreira, Marcelo C. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 45 (02) :399-422
[43]   Multiple nontrivial solutions for a double phase system with concave-convex nonlinearities in subcritical and critical cases [J].
Feng, Yizhe ;
Bai, Zhanbing .
ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (06)
[44]   Infinitely many solutions for quasilinear Schrödinger equation with concave-convex nonlinearities [J].
Chen, Lijuan ;
Chen, Caisheng ;
Chen, Qiang ;
Wei, Yunfeng .
BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
[45]   Multiple Solutions for Schrodinger Equations Involving Concave-Convex Nonlinearities Without (AR)-Type Condition [J].
Zheng, Qin ;
Wu, Dong-Lun .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (05) :2943-2956
[46]   Multiple homoclinic solutions for p-Laplacian Hamiltonian systems with concave-convex nonlinearities [J].
Wan, Lili .
BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
[47]   Solutions to a gauged Schrodinger equation with concave-convex nonlinearities without (AR) condition [J].
Liang, Wenning ;
Zhai, Chengbo .
APPLICABLE ANALYSIS, 2021, 100 (06) :1286-1300
[48]   Existence of Solutions to Fractional Elliptic Equation with the Hardy Potential and Concave-Convex Nonlinearities [J].
Li, Xiangrui ;
Huang, Shuibo ;
Tian, Qiaoyu .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
[49]   Multiple Solutions for Discrete Schrodinger Equations with Concave-Convex Nonlinearities [J].
Fan, Yumiao ;
Xie, Qilin .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (01)
[50]   Multiple solutions for a generalised Schrodinger problem with "concave-convex" nonlinearities [J].
Santos, Andrelino V. ;
Santos Junior, Joao R. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05)