Communication-efficient federated continual learning for distributed learning system with Non-IID data

被引:20
作者
Zhang, Zhao [1 ]
Zhang, Yong [1 ,2 ]
Guo, Da [1 ]
Zhao, Shuang [1 ]
Zhu, Xiaolin [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Beijing Key Lab Work Safety Intelligent Monitorin, Beijing 100876, Peoples R China
基金
国家重点研发计划;
关键词
distributed learning system; federated learning; continual learning; model compression; error compensation;
D O I
10.1007/s11432-020-3419-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the privacy preserving capabilities and the low communication costs, federated learning has emerged as an efficient technique for distributed deep learning/machine learning training. However, given the typical heterogeneous data distributions in the realistic scenario, federated learning faces the challenge of performance degradation on non-independent identically distributed (Non-IID) data across clients. Therefore, we propose federated continual learning to improve the performance on Non-IID data by introducing the knowledge of the other local models. Specifically, we propose a novel federated continual learning method called FedSI, adapting the synaptic intelligence method to the federated learning scenario. Furthermore, in order to reduce the communication overheads, we propose the bidirectional compression and error compensation (BCEC) algorithm to produce the communication-efficient federated continual learning method, called CFedSI. Specifically, the proposed BCEC algorithm compresses both the uplink and the downlink transmission data and utilizes the error compensation locally to ensure training divergence. Experiments show that CFedSI improves the accuracy on Non-IID data by up to 46% with KDDCUP'99 dataset, 23% with CICIDS2017 dataset, 22% with MNIST dataset, and 8% with FashionMNIST dataset, along with the reduced communication overheads.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Ensemble Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Wang, Jingyi
    Hong, Wei
    Quek, Tony Q. S.
    Ding, Zhiguo
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3557 - 3571
  • [32] FedAP: Adaptive Personalization in Federated Learning for Non-IID Data
    Yeganeh, Yousef
    Farshad, Azade
    Boschmann, Johann
    Gaus, Richard
    Frantzen, Maximilian
    Navab, Nassir
    DISTRIBUTED, COLLABORATIVE, AND FEDERATED LEARNING, AND AFFORDABLE AI AND HEALTHCARE FOR RESOURCE DIVERSE GLOBAL HEALTH, DECAF 2022, FAIR 2022, 2022, 13573 : 17 - 27
  • [33] A Comprehensive Study on Personalized Federated Learning with Non-IID Data
    Yu, Menghang
    Zheng, Zhenzhe
    Li, Qinya
    Wu, Fan
    Zheng, Jiaqi
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 40 - 49
  • [34] Privacy-Enhanced Federated Learning for Non-IID Data
    Tan, Qingjie
    Wu, Shuhui
    Tao, Yuanhong
    MATHEMATICS, 2023, 11 (19)
  • [35] Adaptive Federated Learning on Non-IID Data With Resource Constraint
    Zhang, Jie
    Guo, Song
    Qu, Zhihao
    Zeng, Deze
    Zhan, Yufeng
    Liu, Qifeng
    Akerkar, Rajendra
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (07) : 1655 - 1667
  • [36] FEDBS: Learning on Non-IID Data in Federated Learning using Batch Normalization
    Idrissi, Meryem Janati
    Berrada, Ismail
    Noubir, Guevara
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 861 - 867
  • [37] Gradient Calibration for Non-IID Federated Learning
    Li, Jiachen
    Zhang, Yuchao
    Li, Yiping
    Gong, Xiangyang
    Wang, Wendong
    PROCEEDINGS OF THE 2023 THE 2ND ACM WORKSHOP ON DATA PRIVACY AND FEDERATED LEARNING TECHNOLOGIES FOR MOBILE EDGE NETWORK, FEDEDGE 2023, 2023, : 119 - 124
  • [38] High-efficient hierarchical federated learning on non-IID data with progressive collaboration
    Cai, Yunyun
    Xi, Wei
    Shen, Yuhao
    Peng, Youcheng
    Song, Shixuan
    Zhao, Jizhong
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 137 : 111 - 128
  • [39] Adaptive Client Clustering for Efficient Federated Learning Over Non-IID and Imbalanced Data
    Gong, Biyao
    Xing, Tianzhang
    Liu, Zhidan
    Xi, Wei
    Chen, Xiaojiang
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 1051 - 1065
  • [40] Communication-efficient federated learning
    Chen, Mingzhe
    Shlezinger, Nir
    Poor, H. Vincent
    Eldar, Yonina C.
    Cui, Shuguang
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (17)