An efficient real-time stock prediction exploiting incremental learning and deep learning

被引:16
作者
Singh, Tinku [1 ]
Kalra, Riya [1 ]
Mishra, Suryanshi [2 ]
Satakshi [2 ]
Kumar, Manish [1 ]
机构
[1] Indian Inst Informat Technol Allahabad, Dept IT, Prayagraj, UP, India
[2] SHUATS, Dept Math & Stat, Prayagraj, UP, India
关键词
Real-time forecasting; Incremental learning; Technical indicator; Intraday trading; MARKET PREDICTION; SERIES; NETWORKS;
D O I
10.1007/s12530-022-09481-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intraday trading is popular among traders due to its ability to leverage price fluctuations in a short timeframe. For traders, real-time price predictions for the next few minutes can be beneficial for making strategies. Real-time prediction is challenging due to the stock market's non-stationary, complex, noisy, chaotic, dynamic, volatile, and non-parametric nature. Machine learning models are considered effective for stock forecasting, yet, their hyperparameters need tuning with the latest market data to incorporate the market's complexities. Usually, models are trained and tested in batches, which smooths the correction process and speeds up the learning. When making intraday stock predictions, the models should forecast for each instance in contrast to the whole batch and learn simultaneously to ensure high accuracy. In this paper, we propose a strategy based on two different learning approaches: incremental learning and Offline-Online learning, to forecast the stock price using the real-time stream of the live market. In incremental learning, the model is updated continuously upon receiving the stock's next instance from the live-stream, while in Offline-Online learning, the model is retrained after each trading session to make sure it incorporates the latest data complexities. These methods were applied to univariate time-series (established from historical stock price) and multivariate time-series (considering historical stock price as well as technical indicators). Extensive experiments were performed on the eight most liquid stocks listed on the American NASDAQ and Indian NSE stock exchanges, respectively. The Offline-Online models outperformed incremental models in terms of low forecasting error.
引用
收藏
页码:919 / 937
页数:19
相关论文
共 50 条
  • [31] Distributed Networked Real-Time Learning
    Garcia, Alfredo
    Wang, Luochao
    Huang, Jeff
    Hong, Lingzhou
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2021, 8 (01): : 28 - 38
  • [32] Enhancing deep reinforcement learning for scale flexibility in real-time strategy games
    Lemos, Marcelo Luiz Harry Diniz
    Vieira, Ronaldo Silva
    Tavares, Anderson Rocha
    Marcolino, Leandro Soriano
    Chaimowicz, Luiz
    ENTERTAINMENT COMPUTING, 2025, 52
  • [33] Deep Learning-Based Real-Time Crack Segmentation for Pavement Images
    Wang, Wenjun
    Su, Chao
    KSCE JOURNAL OF CIVIL ENGINEERING, 2021, 25 (12) : 4495 - 4506
  • [34] Real-time data visual monitoring of triboelectric nanogenerators enabled by Deep learning
    Zhang, Huiya
    Liu, Tao
    Zou, Xuelian
    Zhu, Yunpeng
    Chi, Mingchao
    Wu, Di
    Jiang, Keyang
    Zhu, Sijia
    Zhai, Wenxia
    Wang, Shuangfei
    Nie, Shuangxi
    Wang, Zhiwei
    NANO ENERGY, 2024, 130
  • [35] Learning to Recommend Signal Plans under Incidents with Real-Time Traffic Prediction
    Yao, Weiran
    Qian, Sean
    TRANSPORTATION RESEARCH RECORD, 2020, 2674 (06) : 45 - 59
  • [36] Analysis of Stock Market Prediction Models Using Deep Learning
    Singh, Harmanjeet
    Shukla, Anand Kr
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2021, 14 (09): : 74 - 80
  • [37] A novel double incremental learning algorithm for time series prediction
    Li, Jinhua
    Dai, Qun
    Ye, Rui
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (10) : 6055 - 6077
  • [38] Comparative Study of Real Time Machine Learning Models for Stock Prediction through Streaming Data
    Behera, Ranjan Kumar
    Das, Sushree
    Rath, Santanu Kumar
    Misra, Sanjay
    Damasevicius, Robertas
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2020, 26 (09) : 1128 - 1147
  • [39] A novel double incremental learning algorithm for time series prediction
    Jinhua Li
    Qun Dai
    Rui Ye
    Neural Computing and Applications, 2019, 31 : 6055 - 6077
  • [40] Real-time recognition of spraying area for UAV sprayers using a deep learning approach
    Khan, Shahbaz
    Tufail, Muhammad
    Khan, Muhammad Tahir
    Khan, Zubair Ahmad
    Iqbal, Javaid
    Wasim, Arsalan
    PLOS ONE, 2021, 16 (04):