Rationalization of passivation strategies toward high-performance perovskite solar cells

被引:174
|
作者
Zhang, Zhihao [1 ,2 ,5 ,6 ,7 ]
Qiao, Lu [4 ]
Meng, Ke [3 ]
Long, Run [4 ]
Chen, Gang [3 ]
Gao, Peng [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Prov Key Lab Nanomat Fujian Inst Res Struct, Fuzhou 350002, Fujian, Peoples R China
[3] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[4] Beijing Normal Univ, Coll Chem, Key Lab Theoret & Computat Photochem, Minist Educ, Beijing 100875, Peoples R China
[5] Chinese Acad Sci, Xiamen Inst Rare Earth Mat, Haixi Inst, Lab Adv Funct Mat, Xiamen 361021, Peoples R China
[6] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610065, Peoples R China
[7] Sichuan Univ, Engn Res Ctr Alternat Energy Mat & Devices, Minist Educ, Chengdu 610065, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
SURFACE PHOTOVOLTAGE SPECTROSCOPY; ELECTRON-HOLE RECOMBINATION; LEAD HALIDE PEROVSKITES; LEWIS-BASE PASSIVATION; INORGANIC PEROVSKITE; HYBRID PEROVSKITE; PLANAR PEROVSKITE; CARRIER LIFETIMES; EFFICIENT; FILMS;
D O I
10.1039/d2cs00217e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lead halide perovskite solar cells (PSCs) have shown unprecedented development in efficiency and progressed relentlessly in improving stability. All the achievements have been accompanied by diverse passivation strategies to circumvent the pervasive defects in perovskite materials, which play crucial roles in the process of charge recombination, ion migration, and component degradation. Among the tremendous efforts made to solve these issues and achieve high-performance PSCs, we classify and review both well-established and burgeoning passivation strategies to provide further guidance for the passivation protocols in PSCs, including chemical passivation to eliminate defects by the formation of chemical bonds, physical passivation to eliminate defects by strain relaxation or physical treatments, energetic passivation to improve the stability toward light and oxygen, and field-effect passivation to regulate the interfacial carrier behavior. The subtle but non-trivial consequences from various passivation strategies need advanced characterization techniques combining synchrotron-based X-ray analysis, capacitance-based measurements, spatially resolved imaging, fluorescent molecular probe, Kelvin probe force microscope, etc., to scrutinize the mechanisms. In the end, challenges and prospective research directions on advancing these passivation strategies are proposed. Judicious combinations among chemical, physical, energetic, and field-effect passivation deserve more attention for future high-efficiency and stable perovskite photovoltaics.
引用
收藏
页码:163 / 195
页数:33
相关论文
共 50 条
  • [21] Poly(Ethylene Glycol) Diacrylate as the Passivation Layer for High-Performance Perovskite Solar Cells
    Xu, Wenzhan
    Zhu, Tao
    Wu, Haodong
    Liu, Lei
    Gong, Xiong
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 45045 - 45055
  • [22] Robust Self-Assembled Molecular Passivation for High-Performance Perovskite Solar Cells
    Guo, Haodan
    Fang, Yanyan
    Cheng, Hong-Bo
    Wu, Jinpeng
    Lei, Yan
    Wang, Shumao
    Li, Xiangrong
    Dai, Yuhua
    Xiang, Wanchun
    Xue, Ding-Jiang
    Lin, Yuan
    Hagfeldt, Anders
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (25)
  • [23] Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells
    Tian, Chenqing
    Liu, Dongxue
    Dong, Yixin
    Wang, Yajie
    Yang, Tinghuan
    Yang, Yang
    Zhang, Meng
    Zhao, Erxin
    Wu, Nan
    Zhang, Zheng
    Yang, Ye
    Gong, Yongshuai
    Yan, Buyi
    Zhang, Shengxiong
    Zhang, Lu
    Niu, Tianqi
    MATERIALS, 2025, 18 (01)
  • [24] Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells
    Ansari, Fatemeh
    Shirzadi, Erfan
    Salavati-Niasari, Masoud
    LaGrange, Thomas
    Nonomura, Kazuteru
    Yum, Jun-Ho
    Sivula, Kevin
    Zakeeruddin, Shaik M.
    Nazeeruddin, Mohammad Khaja
    Graetzel, Michael
    Dyson, Paul J.
    Hagfeldt, Anders
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (26) : 11428 - 11433
  • [25] Effective Surface Passivation via Intermolecular Interactions for High-Performance Perovskite Solar Cells
    Zhan, Jingbo
    Li, Ming
    Zhou, Zhongmin
    SOLAR RRL, 2022, 6 (07)
  • [26] Defects in Perovskite Solar Cells and Their Passivation Strategies
    Feng, Xin
    Liang, Xuefeng
    Fang, Zhou
    Li, Xinxia
    Wang, Zihan
    Li, Huifang
    Zhang, Lisheng
    CHEMISTRYSELECT, 2023, 8 (45):
  • [27] Challenges and strategies relating to device function layers and their integration toward high-performance inorganic perovskite solar cells
    Wang, Huaxin
    Li, Haiyun
    Cai, Wensi
    Zhang, Pengfei
    Cao, Siliang
    Chen, Zhenyu
    Zang, Zhigang
    NANOSCALE, 2020, 12 (27) : 14369 - 14404
  • [28] Strengthened Buried Interface via Metal Sulfide Passivation Toward High-Performance CsPbBr3 Perovskite Solar Cells
    Zhu, Shihui
    Zhang, Teng
    Liu, Wenwen
    Zhao, Baohua
    Chen, Ziming
    Sun, Xinyu
    Wang, Tailin
    Chen, Yanli
    Liu, Heyuan
    Xue, Qifan
    Li, Xiyou
    SOLAR RRL, 2024, 8 (06)
  • [29] Defect Passivation of CsPbBr3 with AgBr for High-Performance All-Inorganic Perovskite Solar Cells
    Chen, Shoulong
    Liu, Xiaolin
    Wang, Zhen
    Li, Wenhui
    Gu, Xiaoyu
    Lin, Jia
    Yang, Tieying
    Gao, Xingyu
    Kyaw, Aung Ko Ko
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (06):
  • [30] Dual Field Passivation Strategy for High-Performance Wide-Bandgap Perovskite Solar Cells
    Feng, Xuzheng
    Li, Xing
    Li, Zhuoxin
    Xue, Yufei
    Chen, Xianggang
    Sun, Xiaoxu
    Tang, Jixiang
    Liu, Shuyi
    Wang, Zishuo
    Xie, Yuhang
    Jia, Rui
    Dai, Songyuan
    Gao, Guoping
    Cai, Molang
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (17) : 25883 - 25893