Bi-objective optimization of post-combustion CO2 capture using methyldiethanolamine

被引:5
|
作者
Hara, Nobuo [1 ]
Taniguchi, Satoshi [1 ]
Yamaki, Takehiro [1 ]
Nguyen, Thuy T. H. [1 ]
Kataoka, Sho [1 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Res Inst Chem Proc Technol, Cent 5, 1-1-1 Higashi, Tsukuba, Ibaraki 3058565, Japan
关键词
CO2; capture; Chemical absorption; Methyldiethanolamine; Multi-objective optimization; Machine learning; NSGA-II; CARBON-DIOXIDE CAPTURE; DESIGN; PLANT; GAS; SEPARATION; SOLVENTS; MODEL;
D O I
10.1016/j.ijggc.2022.103815
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Process simulation and analyzes based on multiple evaluation indexes are crucial for accelerating the practical use of the post-combustion CO2 capture process. This study presents a bi-objective optimization of the post -combustion CO2 absorption process using methyldiethanolamine (MDEA) via machine-learning and genetic al-gorithm to evaluate CO2 emissions from the absorption process using life cycle assessment and cost from operating and capital expenditures. An initial dataset was generated by changing eight design variables, and machine-learning models were built using random forest classifier and Gaussian process regression. Pareto so-lutions were predicted using a genetic algorithm (NSGA-II) with the constraints of purity, recovery, and tem-perature, and were verified via process simulation. Verified data were added to the dataset, and model building, prediction, and verification were repeated. Eventually, 56 Pareto solutions were obtained after 11 iterations. In the final Pareto solutions, CO2 emissions increased from 0.56 to 0.6 t-CO2/t-CO2 with a decrease in cost from 74 to 66 USD/t-CO2. The trends and composition of each objective variable were examined, and the optimal structure of the equipment and operation conditions was clarified. The approach of bi-objective optimization in this study is promising for evaluating the CO2 capture process and individual processes of carbon capture, uti-lization, and storage.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Assessment of advanced solvent-based post-combustion CO2 capture processes using a bi-objective optimization technique
    Kang, Charles A.
    Brandt, Adam R.
    Durlofsky, Louis J.
    Jayaweera, Indira
    APPLIED ENERGY, 2016, 179 : 1209 - 1219
  • [2] Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent
    Hosseini-Ardali, Seyed Mohsen
    Hazrati-Kalbibaki, Majid
    Fattahi, Moslem
    Lezsovits, Ferenc
    ENERGY, 2020, 211
  • [3] MODELING OF THE CO2 CAPTURE IN POST-COMBUSTION
    Amann, Jean-Marc
    Descamps, Cathy
    Kanniche, Mohamed
    Bouallou, Chakib
    SCIENTIFIC STUDY AND RESEARCH-CHEMISTRY AND CHEMICAL ENGINEERING BIOTECHNOLOGY FOOD INDUSTRY, 2007, 8 (01) : 77 - 90
  • [4] Sustainability Improvement of Membrane Separation Process for Post-Combustion CO2 Capturing Using Multi-Objective Optimization
    Asadi, Javad
    Kazempoor, Pejman
    PROCEEDINGS OF ASME 2022 16TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, ES2022, 2022,
  • [5] The role of membranes in post-combustion CO2 capture
    Luis, Patricia
    Van der Bruggen, Bart
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2013, 3 (05): : 318 - 337
  • [6] Experimental study on hybrid MS-CA system for post-combustion CO2 capture
    Jiang, Yanchi
    Zhang, Zhongxiao
    Fan, Haojie
    Fan, Junjie
    An, Haiquan
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2018, 8 (02): : 379 - 392
  • [7] Robust optimization of a post-combustion CO2 capture absorber column under process uncertainty
    Cerrillo-Briones, Ilse M.
    Ricardez-Sandoval, Luis A.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2019, 144 : 386 - 396
  • [8] Evaluation and optimization of VPSA processes with nanostructured zeolite NaX for post-combustion CO2 capture
    Xu, Mai
    Chen, Shaojiang
    Seo, Dong-Kyun
    Deng, Shuguang
    CHEMICAL ENGINEERING JOURNAL, 2019, 371 : 693 - 705
  • [9] Benchmarking of the pre/post-combustion chemical absorption for the CO2 capture
    Dinca, Cristian
    Slavu, Nela
    Badea, Adrian
    JOURNAL OF THE ENERGY INSTITUTE, 2018, 91 (03) : 445 - 456
  • [10] Rational design of temperature swing adsorption cycles for post-combustion CO2 capture
    Joss, Lisa
    Gazzani, Matteo
    Mazzotti, Marco
    CHEMICAL ENGINEERING SCIENCE, 2017, 158 : 381 - 394