Porous Silicon Microneedles for Enhanced Transdermal Drug Delivery

被引:12
|
作者
Tabassum, Nazia [1 ,2 ]
Alba, Maria [1 ]
Yan, Li [1 ]
Voelcker, Nicolas H. [1 ,3 ]
机构
[1] Monash Univ, Monash Inst Pharmaceut Sci, Parkville, Vic 3052, Australia
[2] Univ Cent Punjab, Fac Pharm, Lahore 54000, Pakistan
[3] Melbourne Ctr Nanofabricat Victorian Node Austral, Clayton, Vic 3168, Australia
基金
英国医学研究理事会;
关键词
controlled release; microneedles; porosity; porous silicon; transdermal drug delivery; IN-VIVO; HOLLOW MICRONEEDLE; SKIN; NANOPARTICLES; NANONEEDLES; TISSUES; ARRAYS; MODEL; FILM; TIP;
D O I
10.1002/adtp.202200156
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The transdermal route is attractive for the minimally invasive administration of small and large molecules. Microneedles (MNs) are particularly promising because of their straightforward, cost-effective, and safe administration. But precise control over their degradation rate within the skin remains a challenge. Here, porous silicon microneedles (pSi MNs) with controlled degradation rate, tunable porosity, high payload capacity, and mechanical stability are introduced for transdermal delivery of bioactive molecules. pSi MNs are fabricated by combining dry and wet etching methods. After creating MNs via deep reactive ion etching, a porous surface is obtained by electrochemical anodization, producing pSi MNs of about 42 mu m length, tip diameter < 1 mu m, and conformal porous layers. The biodegradability and the mechanical properties of pSi MNs are adjusted by changing the thickness of the porous layer from 1.5 to 4.0 mu m. Both small and macromolecular drug molecules are uniformly loaded into the porous layer of the pSi MN arrays. Ex vivo penetration experiments on porcine tissue demonstrate efficient transdermal delivery using pSi MNs. The novel pSi MNs with tunable porosity, biodegradability, and mechanical strength offer opportunities for the delivery of biotherapeutics through the skin, engendering innovations in pharmaceutical sciences.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Modulation of transdermal drug delivery with coated microneedles
    Ita, Kevin
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2018, 45 : 203 - 212
  • [22] Research of Polymeric Microneedles for Transdermal Drug Delivery
    Zhao, Xiao
    Li, Xinfang
    Zhang, Peng
    Wang, Youxiang
    PROGRESS IN CHEMISTRY, 2017, 29 (12) : 1518 - 1525
  • [23] Microneedles: an emerging transdermal drug delivery system
    Bariya, Shital H.
    Gohel, Mukesh C.
    Mehta, Tejal A.
    Sharma, Om Prakash
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2012, 64 (01) : 11 - 29
  • [24] Rapidly separating microneedles for transdermal drug delivery
    Zhu, Dan Dan
    Wang, Qi Lei
    Liu, Xu Bo
    Guo, Xin Dong
    ACTA BIOMATERIALIA, 2016, 41 : 312 - 319
  • [25] Dissolving Microneedles for Transdermal Drug Delivery System
    Bai, Chenlin
    Huo, Cheng
    Zhang, Peiyu
    2020 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL, AUTOMATION AND MECHANICAL ENGINEERING, 2020, 1626
  • [26] Novel in situ forming hydrogel microneedles for transdermal drug delivery
    Sivaraman, Arunprasad
    Banga, Ajay K.
    DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2017, 7 (01) : 16 - 26
  • [27] Controllable coating of microneedles for transdermal drug delivery
    Chen, Jianmin
    Qiu, Yuqin
    Zhang, Suohui
    Yang, Guozhong
    Gao, Yunhua
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2015, 41 (03) : 415 - 422
  • [28] Concept Design of Transdermal Microneedles for Diagnosis and Drug Delivery: A Review
    Ahmad, NurFarrahain Nadia
    Ghazali, Nik Nazri Nik
    Wong, Yew Hoong
    ADVANCED ENGINEERING MATERIALS, 2021, 23 (12)
  • [29] Microneedles: A Valuable Physical Enhancer to Increase Transdermal Drug Delivery
    Juan Escobar-Chavez, Jose
    Bonilla-Martinez, Dalia
    Angelica Villegas-Gonzalez, Martha
    Molina-Trinidad, Eva
    Casas-Alancaster, Norma
    Luisa Revilla-Vazquez, Alma
    JOURNAL OF CLINICAL PHARMACOLOGY, 2011, 51 (07) : 964 - 977
  • [30] Polymer microneedles for transdermal drug delivery
    Lee, Jeong Woo
    Han, Mee-Ree
    Park, Jung-Hwan
    JOURNAL OF DRUG TARGETING, 2013, 21 (03) : 211 - 223