Inverse load identification in vibrating nanoplates
被引:4
作者:
Kawano, Alexandre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Escola Politecn, Av Mello Moraes 2231, BR-05508010 Sao Paulo, SP, BrazilUniv Sao Paulo, Escola Politecn, Av Mello Moraes 2231, BR-05508010 Sao Paulo, SP, Brazil
Kawano, Alexandre
[1
]
Morassi, Antonino
论文数: 0引用数: 0
h-index: 0
机构:
Univ Udine, Polytech Dept Engn & Architecture, Udine, ItalyUniv Sao Paulo, Escola Politecn, Av Mello Moraes 2231, BR-05508010 Sao Paulo, SP, Brazil
Morassi, Antonino
[2
]
Zaera, Ramon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Continuum Mech & Struct Anal, Leganes, SpainUniv Sao Paulo, Escola Politecn, Av Mello Moraes 2231, BR-05508010 Sao Paulo, SP, Brazil
Zaera, Ramon
[3
]
机构:
[1] Univ Sao Paulo, Escola Politecn, Av Mello Moraes 2231, BR-05508010 Sao Paulo, SP, Brazil
eigenvalues;
identification of mass density;
inverse problems;
microplate;
strain-gradient elasticity;
STRAIN-GRADIENT ELASTICITY;
BOUNDARY-CONDITIONS;
PLATE;
UNIQUENESS;
BEAMS;
MODEL;
MASS;
SENSORS;
D O I:
10.1002/mma.8565
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we consider the uniqueness issue for the inverse problem of load identification in a nanoplate by dynamic measurements. Working in the framework of the strain gradient linear elasticity theory, we first deduce a Kirchhoff-Love nanoplate model, and we analyze the well-posedness of the equilibrium problem, clarifying the correct Neumann conditions on curved portions of the boundary. Our uniqueness result states that, given a transverse dynamic load n-ary sumation m=1Mgm(t)fm(x)$$ {\sum}_{m equal to 1} circumflex M{g}_m(t){f}_m(x) $$, where M >= 1$$ M\ge 1 $$ and {gm(t)}m=1M$$ {\left\{{g}_m(t)\right\}}_{m equal to 1} circumflex M $$ are known time-dependent functions, if the transverse displacement of the nanoplate is known in an open subset of its domain for any interval of time, then the spatial components {fm(x)}m=1M$$ {\left\{{f}_m(x)\right\}}_{m equal to 1} circumflex M $$ can be determined uniquely from the data. The proof is based on the spherical means method. The uniqueness result suggests a reconstruction technique to approximate the loads, as confirmed by a series of numerical simulations performed on a rectangular clamped nanoplate.