Naïve Bayes Classifiers and accompanying dataset for Pseudomonas syringae isolate characterization

被引:2
作者
Fautt, Chad [1 ,2 ,3 ]
Couradeau, Estelle [2 ,3 ]
Hockett, Kevin L. [1 ,3 ]
机构
[1] Penn State Univ, Dept Plant Pathol & Environm Microbiol, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Ecosyst Sci & Management, University Pk, PA 16802 USA
[3] Penn State Univ, Intercoll Grad Degree Program Ecol, University Pk, PA 16802 USA
基金
美国食品与农业研究所;
关键词
BACTERIAL CANKER; CAUSAL AGENT; LIFE-HISTORY; PV; TOMATO; PLANT; PATHOGEN; EPIDEMIOLOGY; VIRULENCE; EVOLUTION; OUTBREAK;
D O I
10.1038/s41597-024-03003-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Pseudomonas syringae species complex (PSSC) is a diverse group of plant pathogens with a collective host range encompassing almost every food crop grown today. As a threat to global food security, rapid detection and characterization of epidemic and emerging pathogenic lineages is essential. However, phylogenetic identification is often complicated by an unclarified and ever-changing taxonomy, making practical use of available databases and the proper training of classifiers difficult. As such, while amplicon sequencing is a common method for routine identification of PSSC isolates, there is no efficient method for accurate classification based on this data. Here we present a suite of five Naive bayes classifiers for PCR primer sets widely used for PSSC identification, trained on in-silico amplicon data from 2,161 published PSSC genomes using the life identification number (LIN) hierarchical clustering algorithm in place of traditional Linnaean taxonomy. Additionally, we include a dataset for translating classification results back into traditional taxonomic nomenclature (i.e. species, phylogroup, pathovar), and for predicting virulence factor repertoires.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Predictive modeling of Pseudomonas syringae virulence on bean using gradient boosted decision trees [J].
Almeida, Renan N. D. ;
Greenberg, Michael ;
Bundalovic-Torma, Cedoljub ;
Martel, Alexandre ;
Wang, Pauline W. ;
Middleton, Maggie A. ;
Chatterton, Syama ;
Desveaux, Darrell ;
Guttman, David S. .
PLOS PATHOGENS, 2022, 18 (07)
[2]  
[Anonymous], 2021, NCBI assembly resource
[3]   Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology [J].
Baltrus, David A. ;
McCann, Honour C. ;
Guttman, David S. .
MOLECULAR PLANT PATHOLOGY, 2017, 18 (01) :152-168
[4]   A User's Guide to a Data Base of the Diversity of Pseudomonas syringae and Its Application to Classifying Strains in This Phylogenetic Complex [J].
Berge, Odile ;
Monteil, Caroline L. ;
Bartoli, Claudia ;
Chandeysson, Charlotte ;
Guilbaud, Caroline ;
Sands, David C. ;
Morris, Cindy E. .
PLOS ONE, 2014, 9 (09)
[5]   Pseudomonas savastanoi pv. mandevillae pv. nov., a Clonal Pathogen Causing an Emerging, Devastating Disease of the Ornamental Plant Mandevilla spp. [J].
Caballo-Ponce, Eloy ;
Pintado, Adrian ;
Moreno-Perez, Alba ;
Murillo, Jesus ;
Smalla, Kornelia ;
Ramos, Cayo .
PHYTOPATHOLOGY, 2021, 111 (08) :1277-1288
[6]  
Caballo-Ponce E, 2017, MOL PLANT MICROBE IN, V30, P113, DOI [10.1094/MPMI-11-16-0233-R, 10.1094/mpmi-11-16-0233-r]
[7]   GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database [J].
Chaumeil, Pierre-Alain ;
Mussig, Aaron J. ;
Hugenholtz, Philip ;
Parks, Donovan H. .
BIOINFORMATICS, 2020, 36 (06) :1925-1927
[8]   Origin of the Outbreak in France of Pseudomonas syringae pv. actinidiae Biovar 3, the Causal Agent of Bacterial Canker of Kiwifruit, Revealed by a Multilocus Variable-Number Tandem-Repeat Analysis [J].
Cunty, A. ;
Cesbron, S. ;
Poliakoff, F. ;
Jacques, M. -A. ;
Manceau, C. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2015, 81 (19) :6773-6789
[9]  
Cwf30, 2023, Zenodo, DOI 10.5281/ZENODO.8292141
[10]  
Dotmatics, 2022, Geneious