Justification of a New Original Homogenized Model for Ionic Diffusion in Porous Media

被引:1
作者
Bourbatache, M. K. [1 ]
Millet, O. [2 ]
Gagneux, G. [2 ]
机构
[1] INSA Rennes, LGCGM, F-35000 Rennes, France
[2] Univ La Rochelle, LaSIE, F-17000 La Rochelle, France
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2023年 / 90卷 / 10期
关键词
chloride ions; diffusion-migration; periodic homogenization; electrical double layer; cementitious porous media; Nernst-Planck-Poisson problem; PERIODIC HOMOGENIZATION; CHLORIDE TRANSFER; TRANSPORT; EQUATIONS; INGRESS; CLAYS;
D O I
10.1115/1.4062657
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, a new original justification of an homogenized model for ionic diffusion in porous media is proposed. The approach used enables to specify clearly the domain of validity of this homogenized model, involving a source term characterizing the electrical double layer effect at the macroscale. This homogenized model is obtained from the formal periodic homogenization of a Nernst-Planck-Poisson system at the pore scale accounting for conductivity of the solid phase which is generally neglected. The Poisson equation is defined in both fluid and solid phases and the discontinuity of fluxes at the solid-fluid interface is modeled by a jump of the electrical field, linked to the surface electrical charge of the solid interface. Numerical simulations are carried out at the scale of the unit cell to underscore the influence of the contrast on the electrical permittivity between fluid and solid phases. The comparison of the concentrations and the electrical potential given at the macroscale by the homogenized model and by a direct pore scale model reveals the accuracy of the homogenized model which is very simple to use.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Modelling anomalous diffusion in semi-infinite disordered systems and porous media [J].
Metzler, Ralf ;
Rajyaguru, Ashish ;
Berkowitz, Brian .
NEW JOURNAL OF PHYSICS, 2022, 24 (12)
[32]   Upscaling scheme for long-term ion diffusion in charged porous media [J].
Yang, Yuankai ;
Wang, Moran .
PHYSICAL REVIEW E, 2017, 96 (02)
[33]   THREE-DIMENSIONAL HAUSDORFF DERIVATIVE DIFFUSION MODEL FOR ISOTROPIC/ANISOTROPIC FRACTAL POROUS MEDIA [J].
Cai, Wei ;
Chen, Wen ;
Wang, Fajie .
THERMAL SCIENCE, 2018, 22 :S1-S6
[34]   Investigation of the anomalous diffusion in the porous media: a spatiotemporal scaling [J].
Zhokh, Alexey ;
Strizhak, Peter .
HEAT AND MASS TRANSFER, 2019, 55 (09) :2693-2702
[35]   EFFECTIVE MASS DIFFUSION AND DISPERSION IN RANDOM POROUS MEDIA [J].
Aguilar-Madera, Carlos G. ;
Baz-Rodriguez, Sergio A. ;
Ocampo-Perez, Raul .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2015, 93 (04) :756-765
[36]   A volume averaging approach for asymmetric diffusion in porous media [J].
Valdes-Parada, Francisco J. ;
Alvarez-Ramirez, Jose .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (20)
[37]   Crossover from anomalous to normal diffusion in porous media [J].
Reis, F. D. A. Aarao ;
di Caprio, Dung .
PHYSICAL REVIEW E, 2014, 89 (06)
[38]   Homogenization of a pore scale model for precipitation and dissolution in porous media [J].
Kumar, K. ;
Neuss-Radu, M. ;
Pop, I. S. .
IMA JOURNAL OF APPLIED MATHEMATICS, 2016, 81 (05) :877-897
[39]   A new analytical model for flow in acidized fractured-vuggy porous media [J].
Lei, Gang ;
Liao, Qinzhuo ;
Zhang, Dongxiao .
SCIENTIFIC REPORTS, 2019, 9 (1)
[40]   Macroscopic model for solidification in porous media [J].
Moussa, N. ;
Goyeau, B. ;
Duval, H. ;
Gobin, D. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 113 :704-715