Justification of a New Original Homogenized Model for Ionic Diffusion in Porous Media

被引:1
|
作者
Bourbatache, M. K. [1 ]
Millet, O. [2 ]
Gagneux, G. [2 ]
机构
[1] INSA Rennes, LGCGM, F-35000 Rennes, France
[2] Univ La Rochelle, LaSIE, F-17000 La Rochelle, France
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2023年 / 90卷 / 10期
关键词
chloride ions; diffusion-migration; periodic homogenization; electrical double layer; cementitious porous media; Nernst-Planck-Poisson problem; PERIODIC HOMOGENIZATION; CHLORIDE TRANSFER; TRANSPORT; EQUATIONS; INGRESS; CLAYS;
D O I
10.1115/1.4062657
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, a new original justification of an homogenized model for ionic diffusion in porous media is proposed. The approach used enables to specify clearly the domain of validity of this homogenized model, involving a source term characterizing the electrical double layer effect at the macroscale. This homogenized model is obtained from the formal periodic homogenization of a Nernst-Planck-Poisson system at the pore scale accounting for conductivity of the solid phase which is generally neglected. The Poisson equation is defined in both fluid and solid phases and the discontinuity of fluxes at the solid-fluid interface is modeled by a jump of the electrical field, linked to the surface electrical charge of the solid interface. Numerical simulations are carried out at the scale of the unit cell to underscore the influence of the contrast on the electrical permittivity between fluid and solid phases. The comparison of the concentrations and the electrical potential given at the macroscale by the homogenized model and by a direct pore scale model reveals the accuracy of the homogenized model which is very simple to use.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Homogenized model for diffusion and heterogeneous reaction in porous media: Numerical study and validation.
    Bourbatache, Mohamed Khaled
    Millet, Olivier
    Le, Tien Dung
    Moyne, Christian
    APPLIED MATHEMATICAL MODELLING, 2022, 111 : 486 - 500
  • [2] Ionic transfer in charged porous media. Periodic homogenization and parametric study on 2D microstructures
    Bourbatache, K.
    Millet, O.
    Ait-Mokhtar, A.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (21-22) : 5979 - 5991
  • [3] Upscaling diffusion-reaction in porous media
    Bourbatache, M. K.
    Millet, O.
    Moyne, C.
    ACTA MECHANICA, 2020, 231 (05) : 2011 - 2031
  • [4] Geometry-dependent reduced-order models for the computation of homogenized transfer properties in porous media
    Moreau, Antoine
    Falaize, Antoine
    Allery, Cyrille
    Millet, Olivier
    ACTA MECHANICA, 2021, 232 (11) : 4429 - 4459
  • [5] Old and New Approaches Predicting the Diffusion in Porous Media
    Ray, Nadja
    Rupp, Andreas
    Schulz, Raphael
    Knabner, Peter
    TRANSPORT IN POROUS MEDIA, 2018, 124 (03) : 803 - 824
  • [6] Upscaling coupled heterogeneous diffusion reaction equations in porous media
    Bourbatache, M. K.
    Millet, O.
    Moyne, C.
    ACTA MECHANICA, 2023, 234 (06) : 2293 - 2314
  • [7] On diffusion, dispersion and reaction in porous media
    Valdes-Parada, F. J.
    Aguilar-Madera, C. G.
    Alvarez-Ramirez, J.
    CHEMICAL ENGINEERING SCIENCE, 2011, 66 (10) : 2177 - 2190
  • [8] Upscaling diffusion–reaction in porous media
    M. K. Bourbatache
    O. Millet
    C. Moyne
    Acta Mechanica, 2020, 231 : 2011 - 2031
  • [9] Barite precipitation in porous media: Impact of pore structure and surface charge on ionic diffusion
    Rajyaguru, A.
    Wang, J.
    Wittebroodt, C.
    Bildstein, O.
    Detilleux, V
    Lagneau, V
    Savoye, S.
    JOURNAL OF CONTAMINANT HYDROLOGY, 2021, 242
  • [10] Unified Multilayer Diffusion Model and Application to Diffusion Experiment in Porous Media by Method of Chambers
    Liu, Gang
    Barbour, Lee
    Si, Bing C.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (07) : 2412 - 2416