PurposeAn experimental investigation for developing structure-property correlations of hot-rolled E410 steels with different carbon contents, i.e. 0.04wt.%C and 0.17wt.%C metal active gas (MAG) and cold metal transfer (CMT)-MAG weldments was undertaken.Design/methodology/approachMechanical properties and microstructure of MAG and CMT-MAG weldments of two E410 steels with varying content of carbon were compared using standardized mechanical testing procedures, and conventional microscopy.Findings0.04wt.%C steel had strained ferritic and cementite sub-structures in blocky shape and large dislocation density, while 0.17wt.%C steel consisted of pearlite and polygonal ductile ferrite. This effected yield strength (YS), and microhardness being larger in 0.04wt.%C steel, %elongation being larger in 0.17wt.%C steel. Weldments of both E410 steels obtained with CMT-MAG performed better than MAG in terms of YS, ultimate tensile strength (UTS), %elongation, and toughness. It was due to low heat input of CMT-MAG that resulted in refinement of weld metal, and subzones of heat affected zone (HAZ).Originality/valueA substantial improvement in YS (similar to 9%), %elongation (similar to 38%), and room temperature impact toughness (similar to 29%) of 0.04wt.%C E410 steel is achieved with CMT-MAG over MAG welding. Almost similar to 10, similar to 12.5, and similar to 16% increment in YS, %elongation, and toughness of 0.17wt.%C E410 steel is observed with CMT-MAG. Relatively low heat input of CMT-MAG leads to development of fine Widmanstatten and acicular ferrite in weld metal and microstructural refinement in HAZ subzones with nearly similar characteristics of base metal.