Rigidity of quasi-Einstein metrics: the incompressible case

被引:4
作者
Bahuaud, Eric [1 ]
Gunasekaran, Sharmila [2 ]
Kunduri, Hari K. [3 ,4 ]
Woolgar, Eric [5 ,6 ]
机构
[1] Seattle Univ, Dept Math, Seattle, WA 98122 USA
[2] Fields Inst Res Math Sci, 222 Coll St, Toronto, ON M5T 3J1, Canada
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[4] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4K1, Canada
[5] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[6] Univ Alberta, Theoret Phys Inst, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Near-horizon geometry; Extreme black holes; Quasi-Einstein equation; NONEXISTENCE;
D O I
10.1007/s11005-023-01753-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As part of a programme to classify quasi-Einstein metrics (M, g, X) on closed manifolds and near-horizon geometries of extreme black holes, we study such spaces when the vector field X is divergence-free but not identically zero. This condition is satisfied by left-invariant quasi-Einstein metrics on compact homogeneous spaces (including the near-horizon geometry of an extreme Myers-Perry black hole with equal angular momenta in two distinct planes) and on certain bundles over Kahler-Einstein manifolds. We find that these spaces exhibit a mild form of rigidity: they always admit a one-parameter group of isometries generated by X. Further geometrical and topological restrictions are also obtained.
引用
收藏
页数:17
相关论文
共 16 条
[1]   Some Applications of the Hodge-de Rham Decomposition to Ricci Solitons [J].
Aquino, C. ;
Barros, A. ;
Ribeiro, E., Jr. .
RESULTS IN MATHEMATICS, 2011, 60 (1-4) :245-254
[2]   Static near-horizon geometries and rigidity of quasi-Einstein manifolds [J].
Bahuaud, Eric ;
Gunasekaran, Sharmila ;
Kunduri, Hari K. ;
Woolgar, Eric .
LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (06)
[3]   INTEGRAL FORMULAE ON QUASI-EINSTEIN MANIFOLDS AND APPLICATIONS [J].
Barros, A. ;
Ribeiro, E., Jr. .
GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (01) :213-223
[4]   Rigidity of quasi-Einstein metrics [J].
Case, Jeffrey ;
Shu, Yu-Jen ;
Wei, Guofang .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) :93-100
[5]   THE NONEXISTENCE OF QUASI-EINSTEIN METRICS [J].
Case, Jeffrey S. .
PACIFIC JOURNAL OF MATHEMATICS, 2010, 248 (02) :277-284
[6]   On non-existence of static vacuum black holes with degenerate components of the event horizon [J].
Chrusciel, PT ;
Reall, HS ;
Tod, P .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (02) :549-554
[7]  
Dunajski M, 2023, Arxiv, DOI arXiv:2306.17512
[8]   On generalized quasi-Einstein manifolds [J].
Freitas Filho, Antonio Airton ;
Tenenblat, Keti .
JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
[9]  
Gauntlett JP, 2004, ADV THEOR MATH PHYS, V8, P987
[10]  
Gauntlett JP, 2004, ADV THEOR MATH PHYS, V8, P711