Deep Learning-based Implicit CSI Feedback for Time-varying Massive MIMO Channels

被引:3
|
作者
Jiang, Chengyong [1 ]
Guo, Jiajia [1 ]
Wen, Chao-Kai [2 ]
Jin, Shi [1 ]
Hou, Xiaolin [3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Natl Sun Yat sen Univ, Inst Commun Engn, Kaohsiung 80424, Taiwan
[3] DOCOMO Beijing Commun Labs Co Ltd, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Massive MIMO; FDD; Implicit feedback; Deep learning; Time correlation; WIRELESS; CAPACITY;
D O I
10.1109/ICC45041.2023.10278654
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Deep learning has been introduced to implicit channel state information (CSI) feedback and considerably outperforms codebook-based feedback methods adopted by existing systems. This work proposes a time correlation-aided deep learning-based implicit CSI feedback framework named Tbi-ImCsiNet. The long short-term memory network is introduced into the implicit CSI compression side and reconstruction side to extract and utilize the time correlation property among CSI matrices and improve the framework performance. Simulation results show that the proposed Tbi-ImCsiNet reduces approximately 58.3% of the feedback overhead compared with the method without time correlation utilization.
引用
收藏
页码:4955 / 4960
页数:6
相关论文
共 50 条
  • [11] Manifold Learning-Based CSI Feedback in Massive MIMO Systems
    Cao, Yandi
    Yin, Haifan
    He, Gaoning
    Debbah, Merouane
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 225 - 230
  • [12] Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems
    Ye, Hongyuan
    Gao, Feifei
    Qian, Jing
    Wang, Hao
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1742 - 1746
  • [13] Deep Learning-Based CSI Feedback for Terahertz Ultra-Massive MIMO Systems
    Li, Yuling
    Guo, Aihuang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (08) : 1413 - 1416
  • [14] Deep Learning for Massive MIMO CSI Feedback
    Wen, Chao-Kai
    Shih, Wan-Ting
    Jin, Shi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) : 748 - 751
  • [15] CSI Feedback Based on Deep Learning for Massive MIMO Systems
    Liao, Yong
    Yao, Haimei
    Hua, Yuanxiao
    Li, Chunguo
    IEEE ACCESS, 2019, 7 : 86810 - 86820
  • [16] Lightweight Differential Frameworks for CSI Feedback in Time-Varying Massive MIMO Systems
    Zhang, Yangyang
    Zhang, Xichang
    Liu, Yi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 6878 - 6893
  • [17] Deep Learning-Based Cooperative CSI Feedback via Multiple Receiving Antennas in Massive MIMO
    Liang, Xin
    Shen, Jinghan
    Chang, Haoran
    Gu, Xinyu
    Zhang, Lin
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1373 - 1378
  • [18] Quantization Adaptor for Bit-Level Deep Learning-Based Massive MIMO CSI Feedback
    Zhang, Xudong
    Lu, Zhilin
    Zeng, Rui
    Wang, Jintao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (04) : 5443 - 5453
  • [19] Deep Learning-Based Time-varying Channel Prediction for MIMO Systems
    Zhang, Shiyu
    Zhang, Yuxiang
    Zhang, Zhen
    Zhang, Jianhua
    Xia, Liang
    Jiang, Tao
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [20] A Compressive Sensing and Deep Learning-Based Time-Varying Channel Estimation for FDD Massive MIMO Systems
    Fan, Jiancun
    Liang, Peizhe
    Jiao, Zihan
    Han, Xiaodong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8729 - 8738