Deep Learning-based Implicit CSI Feedback for Time-varying Massive MIMO Channels

被引:3
|
作者
Jiang, Chengyong [1 ]
Guo, Jiajia [1 ]
Wen, Chao-Kai [2 ]
Jin, Shi [1 ]
Hou, Xiaolin [3 ]
机构
[1] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Peoples R China
[2] Natl Sun Yat sen Univ, Inst Commun Engn, Kaohsiung 80424, Taiwan
[3] DOCOMO Beijing Commun Labs Co Ltd, Beijing, Peoples R China
来源
ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS | 2023年
基金
中国国家自然科学基金;
关键词
Massive MIMO; FDD; Implicit feedback; Deep learning; Time correlation; WIRELESS; CAPACITY;
D O I
10.1109/ICC45041.2023.10278654
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Deep learning has been introduced to implicit channel state information (CSI) feedback and considerably outperforms codebook-based feedback methods adopted by existing systems. This work proposes a time correlation-aided deep learning-based implicit CSI feedback framework named Tbi-ImCsiNet. The long short-term memory network is introduced into the implicit CSI compression side and reconstruction side to extract and utilize the time correlation property among CSI matrices and improve the framework performance. Simulation results show that the proposed Tbi-ImCsiNet reduces approximately 58.3% of the feedback overhead compared with the method without time correlation utilization.
引用
收藏
页码:4955 / 4960
页数:6
相关论文
共 50 条
  • [11] A Novel Quantization Method for Deep Learning-Based Massive MIMO CSI Feedback
    Chen, Tong
    Guo, Jiajia
    Jin, Shi
    Wen, Chao-Kai
    Li, Geoffrey Ye
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [12] A Compressive Sensing and Deep Learning-Based Time-Varying Channel Estimation for FDD Massive MIMO Systems
    Fan, Jiancun
    Liang, Peizhe
    Jiao, Zihan
    Han, Xiaodong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8729 - 8738
  • [13] A Manifold Learning-Based CSI Feedback Framework for FDD Massive MIMO
    Cao, Yandi
    Yin, Haifan
    Qin, Ziao
    Li, Weidong
    Wu, Weimin
    Debbah, Merouane
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2025, 73 (03) : 1833 - 1846
  • [14] Learning-Based Integrated CSI Feedback and Localization in Massive MIMO
    Guo, Jiajia
    Lv, Yan
    Wen, Chao-Kai
    Li, Xiao
    Jin, Shi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 14988 - 15001
  • [15] Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems
    Ye, Hongyuan
    Gao, Feifei
    Qian, Jing
    Wang, Hao
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1742 - 1746
  • [16] Lightweight Differential Frameworks for CSI Feedback in Time-Varying Massive MIMO Systems
    Zhang, Yangyang
    Zhang, Xichang
    Liu, Yi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 6878 - 6893
  • [17] CSI Feedback Method Based on Deep Learning for FDD Massive MIMO Systems
    Liao Y.
    Yao H.-M.
    Hua Y.-X.
    Zhao Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (06): : 1182 - 1189
  • [18] Deep Learning-Based Cooperative CSI Feedback via Multiple Receiving Antennas in Massive MIMO
    Liang, Xin
    Shen, Jinghan
    Chang, Haoran
    Gu, Xinyu
    Zhang, Lin
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1373 - 1378
  • [19] Continuous Online Learning-Based CSI Feedback in Massive MIMO Systems
    Zhang, Xudong
    Wang, Jintao
    Lu, Zhilin
    Zhang, Hengyu
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (03) : 557 - 561
  • [20] Enhancing Deep Learning Performance of Massive MIMO CSI Feedback
    Ji, Sijie
    Li, Mo
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4949 - 4954