3D-printed amperometric sensor for the detection of ethanol in saliva

被引:3
作者
von Zuben, Theodora Wrobel [1 ]
Kalinke, Cristiane [1 ]
Janegitz, Bruno Campos [2 ]
Salles Jr, Airton Goncalves [1 ,3 ]
Bonacin, Juliano Alves [1 ,3 ]
机构
[1] Univ Campinas UNICAMP, Inst Chem, Sao Paulo, Brazil
[2] Fed Univ Sao Carlos UFSCar, Dept Nat Sci Math & Educ, Araras, SP, Brazil
[3] Univ Campinas UNICAMP, Inst Chem, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
3D-printed electrode; 3D printing; alcohol limits; ethanol sensing; surface activation; ELECTROCHEMICAL SENSOR; GRAPHENE ELECTRODES; URIC-ACID; PERFORMANCE; PLA;
D O I
10.1002/elan.202300044
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this work, we report a non-enzymatic and metal-free ethanol sensor based on 3D PLA-graphene electrodes. We evaluated the optimal activation treatment for PLA-graphene to achieve a sensor for monitoring ethanol levels in saliva samples, following the legal limits for drivers in various countries. The analytical performance of the sensor was determined through amperometric measurements, demonstrating a linear detection ranging supporting electrolyte (0.990-19.3 mmol L-1) and artificial saliva sample (0.990-17.4 mmol L-1), with respective limits of detection of 0.135 and 0.239 mmol L-1. The 3D-printed sensor exhibited excellent repeatability and reproducibility. This method was effectively employed for ethanol detection, highlighting its potential as an alternative approach for assessing ethanol levels in drivers while considering diverse legal regulations across different countries. image
引用
收藏
页数:10
相关论文
共 54 条
[1]   Electrochemical monitoring of alcohol in sweat [J].
Biscay, Julien ;
Findlay, Ewan ;
Dennany, Lynn .
TALANTA, 2021, 224
[2]   Inherent impurities in 3D-printed electrodes are responsible for catalysis towards water splitting [J].
Browne, Michelle P. ;
Urbanova, Veronika ;
Plutnar, Jan ;
Novotny, Filip ;
Pumera, Martin .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (03) :1120-1126
[3]   3D printing for electroanalysis: From multiuse electrochemical cells to sensors [J].
Cardoso, Rafael M. ;
Mendonca, Dianderson M. H. ;
Silva, Weberson P. ;
Silva, Murilo N. T. ;
Nossol, Edson ;
da Silva, Rodrigo A. B. ;
Richter, Eduardo M. ;
Munoz, Rodrigo A. A. .
ANALYTICA CHIMICA ACTA, 2018, 1033 :49-57
[4]   A novel electrodeposited poly(melamine)-palladium nanohybrid catalyst on GCE: Prosperous multi-functional electrode towards methanol and ethanol oxidation [J].
Chokkiah, Bavatharani ;
Eswaran, Muthusankar ;
Wabaidur, Saikh Mohammad ;
Khan, Mohammad Rizwan ;
Ponnusamy, Vinoth Kumar ;
Ragupathy, Dhanusuraman .
FUEL, 2021, 300
[5]   A paper-based nanomodified electrochemical biosensor for ethanol detection in beers [J].
Cinti, Stefano ;
Basso, Mattia ;
Moscone, Danila ;
Arduini, Fabiana .
ANALYTICA CHIMICA ACTA, 2017, 960 :123-130
[6]   Ni-Fe (Oxy)hydroxide Modified Graphene Additive Manufactured (3D-Printed) Electrochemical Platforms as an Efficient Electrocatalyst for the Oxygen Evolution Reaction [J].
dos Santos, Pamyla L. ;
Rowley-Neale, Samuel J. ;
Ferrari, Alejandro G-M ;
Bonacin, Juliano A. ;
Banks, Craig E. .
CHEMELECTROCHEM, 2019, 6 (22) :5633-5641
[7]   Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: Role of exposed graphene sheets [J].
dos Santos, Pamyla L. ;
Katic, Vera ;
Loureiro, Hugo C. ;
dos Santos, Matheus F. ;
dos Santos, Diego P. ;
Formiga, Andre L. B. ;
Bonacin, Juliano A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 281 :837-848
[8]   Next-Generation Additive Manufacturing of Complete Standalone Sodium-Ion Energy Storage Architectures [J].
Down, Michael P. ;
Martinez-Perinan, Emiliano ;
Foster, Christopher W. ;
Lorenzo, Encarnacion ;
Smith, G. C. ;
Banks, Craig E. .
ADVANCED ENERGY MATERIALS, 2019, 9 (11)
[9]   Sensitivity enhancement of AZO-based ethanol sensor decorated by Au nano-islands [J].
Farajollahi, H. ;
Bafghi, Z. Golshan ;
Mohammadi, E. ;
Manavizadeh, N. ;
Salehi, A. .
CURRENT APPLIED PHYSICS, 2020, 20 (08) :917-924
[10]  
Faulks I., 2010, TRENDS IMPAIRED DRIV