A framework for the robust optimization under uncertainty in additive manufacturing

被引:2
作者
Pham, T. Q. D. [1 ,3 ]
Hoang, T. V. [2 ]
Tran, X. V. [1 ]
Fetni, Seifallah [3 ]
Duche, L. [3 ]
Tran, H. S. [3 ]
Habraken, A. M. [3 ,4 ]
机构
[1] Thu Dau Mot Univ, Inst Strategy Dev, Thu Dau Mot 75100, Binh Duong, Vietnam
[2] Rhein Westfal TH Aachen, Chair Math Uncertainty Quantificat, D-52056 Aachen, Germany
[3] Univ Liege, MSM Unit, Allee Decouverte 9 B52-3, B-4000 Liege, Belgium
[4] Fonds Rech Sci Belg FRS FNRS, Brussels, Belgium
关键词
Robust optimization; Monte-Carlo method; Deep learning; Directed energy deposition; Uncertainty quantification; SENSITIVITY-ANALYSIS; MODEL; PART;
D O I
10.1016/j.jmapro.2023.08.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper introduces a conceptual framework for the robust optimization under uncertainty in the directed energy deposition (DED) of M4 High-Speed Steel. The goal is to identify optimal process parameters for robust manufacturing of printed parts with a stationary melt pool depth and low consumed energy under uncertainty within the multiple layers of a bulk sample. To increase the computational efficiency, a deep learning-based surrogate model is built using the training data generated by a validated high-fidelity DED two-dimensional FE model. The robustness of the optimized result is verified using the Monte-Carlo method and compared with experiments and two other deterministic approaches. Furthermore, we conduct a global sensitivity analysis, which indicates that among six uncertain input variables, the thermal conductivity and the convection have the most significant impact on the melt pool depth variation. This study shows the promising possibilities of the presented framework in optimizing the DED process.
引用
收藏
页码:53 / 63
页数:11
相关论文
共 43 条
  • [3] Ahn DG, 2011, INT J PRECIS ENG MAN, V12, P925, DOI [10.1007/s12541-011-0125-5, 10.1007/S12541-011-0125-5]
  • [4] [Anonymous], 1992, RANDOM NUMBER GENERA, DOI DOI 10.1137/1.9781611970081
  • [5] AN OVERVIEW OF NONINTRUSIVE CHARACTERIZATION, PROPAGATION, AND SENSITIVITY ANALYSIS OF UNCERTAINTIES IN COMPUTATIONAL MECHANICS
    Arnst, Maarten
    Ponthot, Jean-Philippe
    [J]. INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2014, 4 (05) : 387 - 421
  • [6] Thermal effect on clad dimension for laser deposited Inconel 718
    Bennett, Jennifer L.
    Wolff, Sarah J.
    Hyatt, Gregory
    Ehmann, Kornel
    Cao, Jian
    [J]. JOURNAL OF MANUFACTURING PROCESSES, 2017, 28 : 550 - 557
  • [7] Data-driven robust optimization
    Bertsimas, Dimitris
    Gupta, Vishal
    Kallus, Nathan
    [J]. MATHEMATICAL PROGRAMMING, 2018, 167 (02) : 235 - 292
  • [8] Robust optimization - A comprehensive survey
    Beyer, Hans-Georg
    Sendhoff, Bernhard
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (33-34) : 3190 - 3218
  • [9] Differential Evolution: A review of more than two decades of research
    Bilal
    Pant, Millie
    Zaheer, Hira
    Garcia-Hernandez, Laura
    Abraham, Ajith
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 90
  • [10] A continuation multilevel Monte Carlo algorithm
    Collier, Nathan
    Haji-Ali, Abdul-Lateef
    Nobile, Fabio
    von Schwerin, Erik
    Tempone, Raul
    [J]. BIT NUMERICAL MATHEMATICS, 2015, 55 (02) : 399 - 432