The Potentials of AI Planning on the Edge

被引:0
|
作者
Georgievski, Ilche [1 ]
Aiello, Marco [1 ]
机构
[1] Univ Stuttgart, IAAS, Serv Comp Dept, Stuttgart, Germany
来源
2023 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING AND COMMUNICATIONS, EDGE | 2023年
关键词
AI Planning; Edge AI; Edge Computing; Distributed AI Planning; Distributed AI; INTELLIGENCE;
D O I
10.1109/EDGE60047.2023.00055
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Edge computing brings computation closer to sources of data and knowledge by embedding computation in the physical space and close to the end users. Edge computing is becoming the ultimate platform where modern applications based on IoT and AI are deployed in a truly distributed manner. When edge applications require goal-oriented behaviour, AI planning comes into play as a powerful tool for achieving such behaviour. In turn, this necessitates AI planning systems that can be deployed and operate on the edge possibly on a multitude of dispersed nodes. Current approaches to distributed AI planning are mainly designed around the requirements and peculiarities of multi-agent systems, such as communication constraints and the self-interest of agents. In this work, we postulate that edge computing provides new perspectives for distributing AI planning. We propose the concept of edge AI planning where multiple AI planning components are distributed on edge nodes and communicate over a vast network. These components need to have clearly defined requirements of what can be distributed and how in order for the overall AI planning to work effectively, in turn enabling correct and consistent executions across the whole system.
引用
收藏
页码:330 / 336
页数:7
相关论文
共 50 条
  • [41] AI-Powered IoT System at the Edge
    Chen, Yiran
    Li, Ang
    Yang, Huanrui
    Zhang, Tunhou
    Yang, Yuewei
    Li, Hai
    Banerjee, Suman
    Pajic, Miroslav
    2021 IEEE THIRD INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2021), 2021, : 242 - 251
  • [42] Benchmarking Modern Edge Devices for AI Applications
    Kang, Pilsung
    Jo, Jongmin
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (03) : 394 - 403
  • [43] Edge Computing Architecture for applying AI to IoT
    Calo, Seraphin B.
    Touna, Maroun
    Verma, Dinesh C.
    Cullen, Alan
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 3012 - 3016
  • [44] Remote Crop Sensing with IoT and AI on the Edge
    Savvidis, Panagiotis
    Papakostas, George A.
    2021 IEEE WORLD AI IOT CONGRESS (AIIOT), 2021, : 48 - 54
  • [45] Edge AI for Internet of Energy: Challenges and perspectives
    Himeur, Yassine
    Sayed, Aya Nabil
    Alsalemi, Abdullah
    Bensaali, Faycal
    Amira, Abbes
    INTERNET OF THINGS, 2024, 25
  • [46] XplAInable: Explainable AI Smoke Detection at the Edge
    Lehnert, Alexander
    Gawantka, Falko
    During, Jonas
    Just, Franz
    Reichenbach, Marc
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (05)
  • [47] aika: A Distributed Edge System for AI Inference
    Alslie, Joakim Aalstad
    Ovesen, Aril Bernhard
    Nordmo, Tor-Arne Schmidt
    Johansen, Havard Dagenborg
    Halvorsen, Pal
    Riegler, Michael Alexander
    Johansen, Dag
    BIG DATA AND COGNITIVE COMPUTING, 2022, 6 (02)
  • [48] Wearable Edge AI Applications for Ecological Environments
    Silva, Mateus C.
    da Silva, Jonathan C. F.
    Delabrida, Saul
    Bianchi, Andrea G. C.
    Ribeiro, Servio P.
    Silva, Jorge Sa
    Oliveira, Ricardo A. R.
    SENSORS, 2021, 21 (15)
  • [49] Tools and methods for Edge-AI-systems
    Schwabe, Nils
    Zhou, Yexu
    Hielscher, Leon
    Roeddiger, Tobias
    Riedel, Till
    Reiter, Sebastian
    AT-AUTOMATISIERUNGSTECHNIK, 2022, 70 (09) : 767 - 776
  • [50] Traffic Safety System Edge AI Computing
    Liu, Albert Chun Chen
    Law, Oscar Ming Kin
    Liao, Jeremiah
    Chen, Jeffrey Y. C.
    Hsieh, Andy Jia En
    Hsieh, Cheng Hung
    2021 ACM/IEEE 6TH SYMPOSIUM ON EDGE COMPUTING (SEC 2021), 2021, : 468 - 469