The Potentials of AI Planning on the Edge

被引:0
|
作者
Georgievski, Ilche [1 ]
Aiello, Marco [1 ]
机构
[1] Univ Stuttgart, IAAS, Serv Comp Dept, Stuttgart, Germany
来源
2023 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING AND COMMUNICATIONS, EDGE | 2023年
关键词
AI Planning; Edge AI; Edge Computing; Distributed AI Planning; Distributed AI; INTELLIGENCE;
D O I
10.1109/EDGE60047.2023.00055
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Edge computing brings computation closer to sources of data and knowledge by embedding computation in the physical space and close to the end users. Edge computing is becoming the ultimate platform where modern applications based on IoT and AI are deployed in a truly distributed manner. When edge applications require goal-oriented behaviour, AI planning comes into play as a powerful tool for achieving such behaviour. In turn, this necessitates AI planning systems that can be deployed and operate on the edge possibly on a multitude of dispersed nodes. Current approaches to distributed AI planning are mainly designed around the requirements and peculiarities of multi-agent systems, such as communication constraints and the self-interest of agents. In this work, we postulate that edge computing provides new perspectives for distributing AI planning. We propose the concept of edge AI planning where multiple AI planning components are distributed on edge nodes and communicate over a vast network. These components need to have clearly defined requirements of what can be distributed and how in order for the overall AI planning to work effectively, in turn enabling correct and consistent executions across the whole system.
引用
收藏
页码:330 / 336
页数:7
相关论文
共 50 条
  • [21] Edge AI and Blockchain for Smart Sustainable Cities: Promise and Potential
    Badidi, Elarbi
    SUSTAINABILITY, 2022, 14 (13)
  • [22] Virtualizing AI at the Distributed Edge towards Intelligent IoT Applications
    Campolo, Claudia
    Genovese, Giacomo
    Iera, Antonio
    Molinaro, Antonella
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2021, 10 (01)
  • [23] BrainyEdge: An AI-enabled framework for IoT edge computing
    Le, Kim -Hung
    Le -Minh, Khanh-Hoi
    Thai, Huy -Tan
    ICT EXPRESS, 2023, 9 (02): : 211 - 221
  • [24] Invited Paper: Towards the Efficiency, Heterogeneity, and Robustness of Edge AI
    Kim, Bokyung
    Du, Zhixu
    Sun, Jingwei
    Chen, Yiran
    2023 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2023,
  • [25] Edge AI: Addressing the Efficiency Paradigm
    Bailey, Colleen P.
    Depoian, Arthur C., II
    Adams, Ethan R.
    2022 IEEE METROCON, 2022, : 25 - 27
  • [26] Energy-efficient AI at the Edge
    Szanto, Peter
    Kiss, Tamas
    Sipos, Karoly Janos
    2022 11TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2022, : 650 - 655
  • [27] Classifying the Devil in the Dust: Edge AI
    Riley, Jared
    Williams, Shannon
    Reyna, Corey
    Adams, Ethan
    Depoian, Arthur C., II
    Bailey, Colleen P.
    Guturu, Parthasarathy
    2022 IEEE METROCON, 2022, : 4 - 6
  • [28] A Framework for Named Networking on Edge AI
    Flores, Fritz Kevin
    Peradilla, Marnel
    2022 THIRTEENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN), 2022, : 399 - 404
  • [29] AI Sensor Applications in Edge Computing
    Lai, Meng-Huang
    Chang, Kang-Shuo
    IEEE NANOTECHNOLOGY MAGAZINE, 2023, 17 (06) : 23 - 28
  • [30] Revisiting Edge AI: Opportunities and Challenges
    Meuser, Tobias
    Loven, Lauri
    Bhuyan, Monowar
    Patil, Shishir G.
    Dustdar, Schahram
    Aral, Atakan
    Bayhan, Suzan
    Becker, Christian
    de Lara, Eyal
    Ding, Aaron Yi
    Edinger, Janick
    Gross, James
    Mohan, Nitinder
    Pimentel, Andy D.
    Riviere, Etienne
    Schulzrinne, Henning
    Simoens, Pieter
    Solmaz, Guerkan
    Welzl, Michael
    IEEE INTERNET COMPUTING, 2024, 28 (04) : 49 - 59