The Potentials of AI Planning on the Edge

被引:0
|
作者
Georgievski, Ilche [1 ]
Aiello, Marco [1 ]
机构
[1] Univ Stuttgart, IAAS, Serv Comp Dept, Stuttgart, Germany
来源
2023 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING AND COMMUNICATIONS, EDGE | 2023年
关键词
AI Planning; Edge AI; Edge Computing; Distributed AI Planning; Distributed AI; INTELLIGENCE;
D O I
10.1109/EDGE60047.2023.00055
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Edge computing brings computation closer to sources of data and knowledge by embedding computation in the physical space and close to the end users. Edge computing is becoming the ultimate platform where modern applications based on IoT and AI are deployed in a truly distributed manner. When edge applications require goal-oriented behaviour, AI planning comes into play as a powerful tool for achieving such behaviour. In turn, this necessitates AI planning systems that can be deployed and operate on the edge possibly on a multitude of dispersed nodes. Current approaches to distributed AI planning are mainly designed around the requirements and peculiarities of multi-agent systems, such as communication constraints and the self-interest of agents. In this work, we postulate that edge computing provides new perspectives for distributing AI planning. We propose the concept of edge AI planning where multiple AI planning components are distributed on edge nodes and communicate over a vast network. These components need to have clearly defined requirements of what can be distributed and how in order for the overall AI planning to work effectively, in turn enabling correct and consistent executions across the whole system.
引用
收藏
页码:330 / 336
页数:7
相关论文
共 50 条
  • [1] Edge AI: A survey
    Singh R.
    Gill S.S.
    Internet of Things and Cyber-Physical Systems, 2023, 3 : 71 - 92
  • [2] Roadmap for edge AI: A Dagstuhl Perspective
    Ding A.Y.
    Peltonen E.
    Meuser T.
    Aral A.
    Becker C.
    Dustdar S.
    Hiessl T.
    Kranzlmüller D.
    Liyanage M.
    Maghsudi S.
    Mohan N.
    Ott J.
    Rellermeyer J.S.
    Schulte S.
    Schulzrinne H.
    Solmaz G.
    Tarkoma S.
    Varghese B.
    Wolf L.
    Computer Communication Review, 2022, 52 (01): : 28 - 33
  • [3] Roadmap for Edge AI: A Dagstuhl Perspective
    Ding, Aaron Yi
    Peltonen, Ella
    Meuser, Tobias
    Aral, Atakan
    Becker, Christian
    Dustdar, Schahram
    Hiessl, Thomas
    Kranzlmueller, Dieter
    Liyanage, Madhusanka
    Maghsudi, Setareh
    Mohan, Nitinder
    Ott, Joerg
    Rellermeyer, Jan S.
    Schulte, Stefan
    Schulzrinne, Henning
    Solmaz, Guerkan
    Tarkoma, Sasu
    Varghese, Blesson
    Wolf, Lars
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2022, 52 (01) : 28 - 33
  • [4] An Investigation Into the Advancements of Edge-AI Capabilities for Structural Health Monitoring
    Mishra, Anoop
    Gangisetti, Gopinath
    Khazanchi, Deepak
    IEEE ACCESS, 2024, 12 : 25325 - 25345
  • [5] From Technical Prerequisites to Improved Care: Distributed Edge AI for Tomographic Imaging
    Akdemir, Bilgehan
    Shahid, Hafiz Faheem
    Brix, Mikael A. K.
    Laakkola, Juho
    Islam, Johirul
    Kumar, Tanesh
    Reponen, Jarmo
    Nieminen, Miika T.
    Harjula, Erkki
    IEEE ACCESS, 2025, 13 : 14317 - 14343
  • [6] Improving edge AI for industrial IoT applications with distributed learning using consensus
    Fidelis, Samuel
    Castro, Marcio
    Siqueira, Frank
    DESIGN AUTOMATION FOR EMBEDDED SYSTEMS, 2024, 28 (01) : 67 - 89
  • [7] Edge Intelligence: The Convergence of Humans, Things, and AI
    Rausch, Thomas
    Dustdar, Schahram
    2019 IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEERING (IC2E), 2019, : 86 - 96
  • [8] Trustworthy and Sustainable Edge AI: A Research Agenda
    Ding, Aaron Yi
    Janssen, Marijn
    Crowcroft, Jon
    2021 THIRD IEEE INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS AND APPLICATIONS (TPS-ISA 2021), 2021, : 164 - 172
  • [9] Edge AI in Smart Farming IoT: CNNs at the Edge and Fog Computing with LoRa
    Gia, T. Nguyen
    Qingqing, L.
    Queralta, J. Pena
    Zou, Z.
    Tenhunen, H.
    Westerlund, T.
    2019 IEEE AFRICON, 2019,
  • [10] E-Tree Learning: A Novel Decentralized Model Learning Framework for Edge AI
    Yang, Lei
    Lu, Yanyan
    Cao, Jiannong
    Huang, Jiaming
    Zhang, Mingjin
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (14): : 11290 - 11304