A symmetry of silting quivers

被引:0
作者
Aihara, Takuma [1 ]
Wang, Qi [2 ]
机构
[1] Tokyo Gakugei Univ, Dept Math, Tokyo 1848501, Japan
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
关键词
silting object; silting mutation; silting quiver; support & tau; -tilting module; -tilting quiver; anti-automorphism; TAU-TILTING MODULES; ALGEBRAS;
D O I
10.1017/S0017089523000204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate symmetry of the silting quiver of a given algebra which is induced by an anti-automorphism of the algebra. In particular, one shows that if there is a primitive idempotent fixed by the anti-automorphism, then the 2-silting quiver (= the support r-tilting quiver) has a bisection. Consequently, in that case, we obtain that the cardinality of the 2-silting quiver is an even number (if it is finite).
引用
收藏
页码:687 / 696
页数:10
相关论文
共 18 条
  • [1] The Number of Two-Term Tilting Complexes over Symmetric Algebras with Radical Cube Zero
    Adachi, Takahide
    Aoki, Toshitaka
    [J]. ANNALS OF COMBINATORICS, 2023, 27 (01) : 149 - 167
  • [2] The classification of τ-tilting modules over Nakayama algebras
    Adachi, Takahide
    [J]. JOURNAL OF ALGEBRA, 2016, 452 : 227 - 262
  • [3] τ-tilting theory
    Adachi, Takahide
    Iyama, Osamu
    Reiten, Idun
    [J]. COMPOSITIO MATHEMATICA, 2014, 150 (03) : 415 - 452
  • [4] REPORT ON THE FINITENESS OF SILTING OBJECTS
    Aihara, Takuma
    Honma, Takahiro
    Miyamoto, Kengo
    Wang, Qi
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2021, 64 (02) : 217 - 233
  • [5] Silting mutation in triangulated categories
    Aihara, Takuma
    Iyama, Osamu
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 : 633 - 668
  • [6] Alperin J. L., 1986, Cambridge Studies in Advanced Mathematics, V11
  • [7] Ariki S., 2022, PREPRINT
  • [8] Simplicial complexes and tilting theory for Brauer tree algebras
    Asashiba, Hideto
    Mizuno, Yuya
    Nakashima, Ken
    [J]. JOURNAL OF ALGEBRA, 2020, 551 : 119 - 153
  • [9] Eisele F, 2018, MATH Z, V290, P1377, DOI 10.1007/s00209-018-2067-4
  • [10] Gelfand I.M., 1979, FUNKTSIONAL ANAL PRI, V13, P1