Outlook: How I Learned to Love Machine Learning (A Personal Perspective on Machine Learning in Process Systems Engineering)

被引:8
作者
Zavala, Victor M. [1 ,2 ]
机构
[1] Univ Wisconsin Madison, Dept Chem & Biol Engn, Madison, WI 53706 USA
[2] Math & Comp Sci Div, Lemont, IL 60439 USA
基金
美国国家科学基金会;
关键词
MODEL-PREDICTIVE CONTROL; OPTIMIZATION; IDENTIFICATION; DESIGN; ALGORITHMS; DISCOVERY; MPC;
D O I
10.1021/acs.iecr.3c01565
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
引用
收藏
页码:8995 / 9005
页数:11
相关论文
共 104 条
  • [1] Abbott N., 2021, US Patent, Patent No. [11,037,032, 11037032]
  • [2] Physics-informed machine learning modeling for predictive control using noisy data
    Alhajeri, Mohammed S.
    Abdullah, Fahim
    Wu, Zhe
    Christofides, Panagiotis D.
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 186 : 34 - 49
  • [3] DeCODe: a community-based algorithm for generating high-quality decompositions of optimization problems
    Allman, Andrew
    Tang, Wentao
    Daoutidis, Prodromos
    [J]. OPTIMIZATION AND ENGINEERING, 2019, 20 (04) : 1067 - 1084
  • [4] Next generation pure component property estimation models: With and without machine learning techniques
    Alshehri, Abdulelah S.
    Tula, Anjan K.
    You, Fengqi
    Gani, Rafiqul
    [J]. AICHE JOURNAL, 2022, 68 (06)
  • [5] Advances in surrogate based modeling, feasibility analysis, and optimization: A review
    Bhosekar, Atharv
    Ierapetritou, Marianthi
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2018, 108 : 250 - 267
  • [6] Retrospective on optimization
    Biegler, LT
    Grossmann, IE
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (08) : 1169 - 1192
  • [7] MULTI-FACTOR EXPERIMENTAL-DESIGNS FOR EXPLORING RESPONSE SURFACES
    BOX, GEP
    HUNTER, JS
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1957, 28 (01): : 195 - 241
  • [8] Perspectives on the integration between first-principles and data-driven modeling
    Bradley, William
    Kim, Jinhyeun
    Kilwein, Zachary
    Blakely, Logan
    Eydenberg, Michael
    Jalvin, Jordan
    Laird, Carl
    Boukouvala, Fani
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2022, 166
  • [9] Brockett R.W., 1982, NEW DIRECTIONS APPL, P11, DOI DOI 10.1007/978-1-4612-5651-9_2
  • [10] Geometric Deep Learning Going beyond Euclidean data
    Bronstein, Michael M.
    Bruna, Joan
    LeCun, Yann
    Szlam, Arthur
    Vandergheynst, Pierre
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) : 18 - 42