Impact of Deep Learning Optimizers and Hyperparameter Tuning on the Performance of Bearing Fault Diagnosis

被引:6
|
作者
Lee, Seongjae [1 ]
Kim, Taehyoun [1 ]
机构
[1] Univ Seoul, Dept Mech & Informat Engn Smart Cities, Seoul 02504, South Korea
基金
新加坡国家研究基金会;
关键词
Fault diagnosis; Benchmark testing; Convolutional neural networks; Deep learning; Parameter estimation; Computational modeling; Noise measurement; Bearing fault diagnosis; convolutional neural network; deep learning; hyperparameter tuning; noise-robustness; optimization; CONVOLUTIONAL NEURAL-NETWORK; EMPIRICAL MODE DECOMPOSITION; NOISE;
D O I
10.1109/ACCESS.2023.3281910
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has recently resulted in remarkable performance improvements in machine fault diagnosis using only raw input vibration signals without signal preprocessing. However, research on machine fault diagnosis using deep learning has primarily focused on model architectures, even though optimizers and their hyperparameters used for training can have a significant impact on model performance. This paper presents extensive benchmarking results on the tuning of optimizer hyperparameters using various combinations of datasets, convolutional neural network (CNN) models, and optimizers with varying batch sizes. First, we set the hyperparameter search space and then trained the models using hyperparameters sampled from a quasi-random distribution. Subsequently, we refined the search space based on the results of the first step and finally evaluated model performances using noise-free and noisy data. The results showed that the learning rate and momentum factor, which determine training speed, substantially affected the model's accuracy. We also discovered that the impacts of batch size and model training speed on model performance were highly correlated; large batch sizes led to higher performances at higher learning rates or momentum factors. Conversely, model performances tended to be high for small batch sizes at lower learning rates or momentum factors. In addition, regarding the growing attention to on-device artificial intelligence (AI) solutions, we assessed the accuracy and computational efficiency of candidate models. A CNN with training interference (TICNN) was the most efficient model in terms of computational efficiency and robustness against noise among the benchmarked candidate models.
引用
收藏
页码:55046 / 55070
页数:25
相关论文
共 50 条
  • [31] Bearing fault diagnosis method based on compressed acquisition and deep learning
    Wen J.
    Yan C.
    Sun J.
    Qiao Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2018, 39 (01): : 171 - 179
  • [32] Hybrid multimodal fusion with deep learning for rolling bearing fault diagnosis
    Che, Changchang
    Wang, Huawei
    Ni, Xiaomei
    Lin, Ruiguan
    MEASUREMENT, 2021, 173
  • [33] Performance Benchmarking of Parallel Hyperparameter Tuning for Deep Learning Based Tornado Predictions
    Basalyga, Jonathan N.
    Barajas, Carlos A.
    Gobbert, Matthias K.
    Wang, Jianwu
    BIG DATA RESEARCH, 2021, 25
  • [34] A joint deep learning model for bearing fault diagnosis in noisy environments
    Ji, Min
    Chu, Changsheng
    Yang, Jinghui
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, : 3265 - 3281
  • [35] A Deep Learning Approach to Vegetation Images Recognition in Buildings: a Hyperparameter Tuning Case Study
    Ottoni, Andre L. C.
    Novo, Marcela S.
    IEEE LATIN AMERICA TRANSACTIONS, 2021, 19 (12) : 2062 - 2070
  • [36] Automatic Hyperparameter Tuning in Deep Convolutional Neural Networks Using Asynchronous Reinforcement Learning
    Neary, Patrick L.
    2018 IEEE INTERNATIONAL CONFERENCE ON COGNITIVE COMPUTING (ICCC), 2018, : 73 - 77
  • [37] AN EMPIRICAL STUDY OF MACHINE LEARNING AND DEEP LEARNING ALGORITHMS ON BEARING FAULT DIAGNOSIS BENCHMARKS
    Rezaeianjouybari, Behnoush
    Shang, Yi
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 7A, 2021,
  • [38] Multi-Information Fusion Fault Diagnosis of Bogie Bearing Under Small Samples via Unsupervised Representation Alignment Deep Q-Learning
    Zhu, Yan
    Liang, Xifeng
    Wang, Tiantian
    Xie, Jingsong
    Yang, Jinsong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [39] Understanding and improving deep learning-based rolling bearing fault diagnosis with attention mechanism
    Li, Xiang
    Zhang, Wei
    Ding, Qian
    SIGNAL PROCESSING, 2019, 161 : 136 - 154
  • [40] Deep Learning Based Intelligent Industrial Fault Diagnosis Model
    Surendran, R.
    Khalaf, Osamah Ibrahim
    Romero, Carlos Andres Tavera
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 6323 - 6338