Numerical Simulation of the Effect of Additives on Autoignition of Lean Hydrogen-Air Mixtures

被引:6
|
作者
Tereza, A. M. [1 ]
Agafonov, G. L. [1 ]
Anderzhanov, E. K. [1 ]
Betev, A. S. [1 ]
Medvedev, S. P. [1 ]
Khomik, S. V. [1 ]
Cherepanova, T. T. [1 ]
机构
[1] Russian Acad Sci, Semenov Fed Res Ctr Chem Phys, Moscow, Russia
关键词
lean hydrogen-air mixture; autoignition; ignition delay; numerical simulation; chemical kinetics; detailed kinetic mechanism; SHOCK-TUBE; IGNITION DELAY; COMBUSTION; DETONATION; EXPLOSION; MECHANISMS; OXIDATION; FEATURES; METHANE; OXYGEN;
D O I
10.1134/S1990793123020173
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Simulations of the effect of addition of atoms, molecules, and radicals on autoignition of lean (14%) and ultra-lean (6%) hydrogen-air mixtures are performed in the temperature range of 800 to 1700 K at initial pressures of 1 and 6 bar. Computed results demonstrate that adding H, O, OH, HO2, and H2O2 reduces ignition delay time tau. Common tendencies are revealed in the temperature-dependent effects of the added species. For each additive, the corresponding effect is found to be the strongest at temperatures near 900 and 1100 K at pressures of 1 and 6 bar, respectively. It is shown that the effects of addition of O and H are similar in magnitude. The effect of HO2 is much weaker compared to other additives, and its temperature dependence is qualitatively analogous to that of H2O2. While the extent of ignition-delay reduction decreases towards the endpoints of the temperature interval explored for all additives, significant effects persist in its high-temperature part for OH and in the low-temperature one for HO2 and H2O2. Addition of water up to 1% does not affect the value of tau.
引用
收藏
页码:425 / 432
页数:8
相关论文
共 50 条
  • [41] Flame propagation in stratified hydrogen-air mixtures: Spark placement effects
    Owston, Rebecca
    Abraham, John
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (15) : 6532 - 6544
  • [42] Flame wrinkling factor in quiescent hydrogen-air mixtures
    Taivassalo, Veikko
    NUCLEAR ENGINEERING AND DESIGN, 2024, 421
  • [43] Effect of ozone addition on oblique detonations in hydrogen-air mixtures
    Teng, Honghui
    Liu, Siyuan
    Li, Zhenzhen
    Yang, Pengfei
    Wang, Kuanliang
    Tian, Cheng
    APPLIED THERMAL ENGINEERING, 2024, 240
  • [44] Laser-initiated ignition of hydrogen-air mixtures
    Starik, A. M.
    Kuleshov, P. S.
    Titova, N. S.
    TECHNICAL PHYSICS, 2009, 54 (03) : 354 - 364
  • [45] Explosion hazard of hydrogen-air mixtures in the large volumes
    Petukhov, V. A.
    Naboko, I. M.
    Fortov, V. E.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (14) : 5924 - 5931
  • [46] Features of the Inhibition of Hydrogen-Air Mixtures by Propylene Additive
    Belyaev, A. A.
    Ermolaev, B. S.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 18 (04) : 988 - 1001
  • [47] Hot surface ignition dynamics in premixed hydrogen-air near the lean flammability limit
    Boeck, L. R.
    Melguizo-Gavilanes, J.
    Shepherd, J. E.
    COMBUSTION AND FLAME, 2019, 210 : 467 - 478
  • [48] Numerical simulation of hydrogen-air reacting flows in rectangular channels with catalytic surface reactions
    Amano, Ryoichi S.
    Abou-Ellail, Mohsen M.
    Elhaw, Samer
    Ibrahim, Mohamed Saeed
    HEAT AND MASS TRANSFER, 2013, 49 (09) : 1243 - 1260
  • [49] Three-Dimensional Direct Numerical Simulation of Turbulent Combustion of Hydrogen-Air Mixtures in a Synthetic Turbulent Field
    Basevich, V. Ya
    Belyaev, A. A.
    Ivanov, V. S.
    Medvedev, S. N.
    Frolov, S. M.
    Frolov, F. S.
    Basara, B.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 13 (04) : 636 - 645
  • [50] On the explosion characteristics of hydrogen-air mixtures in a constant volume vessel with an orifice plate
    Wang, Lu-Qing
    Ma, Hong-Hao
    Shen, Zhao-Wu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (12) : 6271 - 6277