Estimating SARS-CoV-2 seroprevalence

被引:0
作者
Rosin, Samuel P. [1 ,3 ]
Shook-Sa, Bonnie E. [1 ]
Cole, Stephen R. [2 ]
Hudgens, Michael G. [1 ]
机构
[1] Univ North Carolina Chapel Hill, Dept Biostat, Chapel Hill, NC 27516 USA
[2] Univ North Carolina Chapel Hill, Dept Epidemiol, Chapel Hill, NC 27516 USA
[3] George Washington Univ, Biostat Ctr, Dept Biostat & Bioinformat, 6110 Execut Blvd, Rockville, MD 20852 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
COVID-19; diagnostic tests; estimating equations; seroepidemiologic studies; standardization; ESTIMATING PREVALENCE; POSITIVITY;
D O I
10.1093/jrsssa/qnad068
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Governments and public health authorities use seroprevalence studies to guide responses to the COVID-19 pandemic. Seroprevalence surveys estimate the proportion of individuals who have detectable SARS-CoV-2 antibodies. However, serologic assays are prone to misclassification error, and non-probability sampling may induce selection bias. In this paper, non-parametric and parametric seroprevalence estimators are considered that address both challenges by leveraging validation data and assuming equal probabilities of sample inclusion within covariate-defined strata. Both estimators are shown to be consistent and asymptotically normal, and consistent variance estimators are derived. Simulation studies are presented comparing the estimators over a range of scenarios. The methods are used to estimate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence in New York City, Belgium, and North Carolina.
引用
收藏
页码:834 / 851
页数:18
相关论文
共 48 条
  • [1] How to detect and reduce potential sources of biases in studies of SARS-CoV-2 and COVID-19
    Accorsi, Emma K.
    Qiu, Xueting
    Rumpler, Eva
    Kennedy-Shaffer, Lee
    Kahn, Rebecca
    Joshi, Keya
    Goldstein, Edward
    Stensrud, Mats J.
    Niehus, Rene
    Cevik, Muge
    Lipsitch, Marc
    [J]. EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2021, 36 (02) : 179 - 196
  • [2] [Anonymous], 1999, Analysis of Health Surveys
  • [3] [Anonymous], 2021, Population projections 2020-2070
  • [4] SeroTracker: a global SARS-CoV-2 seroprevalence dashboard
    Arora, Rahul K.
    Joseph, Abel
    Van Wyk, Jordan
    Rocco, Simona
    Atmaja, Austin
    May, Ewan
    Yan, Tingting
    Bobrovitz, Niklas
    Chevrier, Jonathan
    Cheng, Matthew P.
    Williamson, Tyler
    Buckeridge, David L.
    [J]. LANCET INFECTIOUS DISEASES, 2020, 21 (04) : E75 - E76
  • [5] Estimated SARS-CoV-2 Seroprevalence in the US as of September 2020
    Bajema, Kristina L.
    Wiegand, Ryan E.
    Cuffe, Kendra
    Patel, Sadhna V.
    Iachan, Ronaldo
    Lim, Travis
    Lee, Adam
    Moyse, Davia
    Havers, Fiona P.
    Harding, Lee
    Fry, Alicia M.
    Hall, Aron J.
    Martin, Kelly
    Biel, Marjorie
    Deng, Yangyang
    Meyer, William A., III
    Mathur, Mohit
    Kyle, Tonja
    Gundlapalli, Adi V.
    Thornburg, Natalie J.
    Petersen, Lyle R.
    Edens, Chris
    [J]. JAMA INTERNAL MEDICINE, 2021, 181 (04) : 450 - 460
  • [6] SARS-CoV-2 Seroprevalence among a Southern US Population Indicates Limited Asymptomatic Spread under Physical Distancing Measures
    Barzin, Amir
    Schmitz, John L.
    Rosin, Samuel
    Sirpal, Rameet
    Almond, Martha
    Robinette, Carole
    Wells, Samantha
    Hudgens, Michael
    Olshan, Andrew
    Deen, Stephanie
    Krejci, Patrick
    Quackenbush, Eugenia
    Chronowski, Kevin
    Cornaby, Caleb
    Goins, Janette
    Butler, Linda
    Aucoin, Julia
    Boyer, Kim
    Faulk, Janet
    Alston-Johnson, Devena
    Page, Cristen
    Zhou, Yijun
    Fiscus, Lynne
    Damania, Blossom
    Dittmer, Dirk P.
    Peden, David B.
    [J]. MBIO, 2020, 11 (05): : 1 - 8
  • [7] Confidence intervals for prevalence estimates from complex surveys with imperfect assays
    Bayer, Damon M.
    Fay, Michael P.
    Graubard, Barry I.
    [J]. STATISTICS IN MEDICINE, 2023, 42 (11) : 1822 - 1867
  • [8] Boos DD, 2013, SPRINGER TEXTS STAT, P1, DOI 10.1007/978-1-4614-4818-1
  • [9] Quantifying previous SARS-CoV-2 infection through mixture modelling of antibody levels
    Bottomley, C.
    Otiende, M.
    Uyoga, S.
    Gallagher, K.
    Kagucia, E. W.
    Etyang, A. O.
    Mugo, D.
    Gitonga, J.
    Karanja, H.
    Nyagwange, J.
    Adetifa, I. M. O.
    Agweyu, A.
    Nokes, D. J.
    Warimwe, G. M.
    Scott, J. A. G.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] Estimating the cumulative incidence of SARS-CoV-2 with imperfect serological tests: Exploiting cutoff-free approaches
    Bouman, Judith A.
    Riou, Julien
    Bonhoeffer, Sebastian
    Regoes, Roland R.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (02)