Discriminative sparse least square regression for semi-supervised learning

被引:18
|
作者
Liu, Zhonghua [1 ,2 ]
Lai, Zhihui [3 ]
Ou, Weihua [4 ]
Zhang, Kaibing [5 ]
Huo, Hua [2 ]
机构
[1] Zhejiang Ocean Univ, Sch Informat Engn, Zhoushan, Peoples R China
[2] Henan Univ Sci & Technol, Informat Engn Coll, Luoyang, Peoples R China
[3] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[4] Guizhou Normal Univ, Sch Big Data & Comp Sci, Guiyang, Peoples R China
[5] Xian Polytech Univ, Coll Elect & Informat, Xian, Peoples R China
关键词
Least square regression; Semi-supervised learning; Manifold regularization; Inter-class sparsity; FACE RECOGNITION; FEATURE-EXTRACTION; CLASSIFICATION;
D O I
10.1016/j.ins.2023.03.128
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The various variants of the classical least square regression (LSR) have been extensively utilized in numerous applications. However, most previous linear regression methods only consider the fitting between the original features and the corresponding label information. They ignore the correlations among data points. Another problem with these methods is that the strict zero-one binary label matrix is utilized as the final regression target. The degree of freedom is minimal, and the binary label information cannot be adequately fitted. A semi-supervised learning discriminative sparse least square regression (DSLSR) algorithm with some notable characteristics is presented to address the above mentioned issues. Firstly, we utilize the estimated label of the observed samples to design a new objective function in the generalized regression form, further generalizing the previous least square regression framework. Secondly, a novel jointly sparse regularized term is designed to take full use of the estimated label information, which is expected to force the extracted features of each class to be jointly sparse instead of the learned projection being jointly sparse. Thirdly, Label estimation, label relaxation, locality, and joint sparsity are seamlessly integrated into the least square regression (LSR) framework. This property can make the margins of the observed data with the same class label as minimal as feasible while concurrently maximizing the margins of observed data from other classes. The experimental findings reveal that DSLSR outperforms state-of-the-art linear regression-based approaches.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] SEMI-SUPERVISED HYPERSPECTRAL MANIFOLD LEARNING FOR REGRESSION
    Uto, Kuniaki
    Kosugi, Yukio
    Saito, Genya
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 9 - 12
  • [22] Learning Safe Prediction for Semi-Supervised Regression
    Li, Yu-Feng
    Zha, Han-Wen
    Zhou, Zhi-Hua
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2217 - 2223
  • [23] Robust embedding regression for semi-supervised learning
    Bao, Jiaqi
    Kudo, Mineichi
    Kimura, Keigo
    Sun, Lu
    PATTERN RECOGNITION, 2024, 145
  • [24] Learning from normalized local and global discriminative information for semi-supervised regression and dimensionality reduction
    Zhao, Mingbo
    Chow, Tommy W. S.
    Wu, Zhou
    Zhang, Zhao
    Li, Bing
    INFORMATION SCIENCES, 2015, 324 : 286 - 309
  • [25] REGULARIZED SEMI-SUPERVISED LEAST SQUARES REGRESSION WITH DEPENDENT SAMPLES
    Tong, Hongzhi
    Ng, Michael
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (05) : 1347 - 1360
  • [26] Semi-Supervised Classification Using Sparse Gaussian Process Regression
    Patel, Amrish
    Sundararajan, S.
    Shevade, Shirish
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1193 - 1198
  • [27] Regularizing Discriminative Capability of CGANs for Semi-Supervised Generative Learning
    Liu, Yi
    Deng, Guangchang
    Zeng, Xiangping
    Wu, Si
    Yu, Zhiwen
    Wong, Hau-San
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 5719 - 5728
  • [28] Nonnegative Sparse and KNN graph for semi-supervised learning
    Zhang, Yunbin
    Zhang, Chunmei
    Zhou, Qianqi
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS (AMEII 2016), 2016, 73 : 1178 - 1182
  • [29] A sparse large margin semi-supervised learning method
    Choi, Hosik
    Kim, Jinseog
    Kim, Yongdai
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2010, 39 (04) : 479 - 487