Insight into the molecular mechanism of the transposon-encoded type I-F CRISPR-Cas system

被引:5
|
作者
Alalmaie, Amnah [1 ]
Diaf, Saousen [1 ]
Khashan, Raed [2 ]
机构
[1] St Joseph Univ, Philadelphia Coll Pharm, Dept Pharmaceut Sci, Philadelphia, PA 19131 USA
[2] Long Isl Univ, Dept Pharmaceut Sci, Div Pharmaceut Sci, Brooklyn, NY 11201 USA
关键词
Transposon-guided CRISPR; Review; CRISPR Cas; Structural and Molecular Mechanism; TniQ Activation; ESCHERICHIA-COLI ATTTN7; TN7; TRANSPOSITION; STRUCTURAL BASIS; DNA RECOGNITION; SEQUENCE REQUIREMENTS; HIV-1; INTEGRASE; DUAL-RNA; SITE; PROTEINS; TNSB;
D O I
10.1186/s43141-023-00507-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-Cas9 is a popular gene-editing tool that allows researchers to introduce double-strand breaks to edit parts of the genome. CRISPR-Cas9 system is used more than other gene-editing tools because it is simple and easy to customize. However, Cas9 may produce unintended double-strand breaks in DNA, leading to off-target effects. There have been many improvements in the CRISPR-Cas system to control the off-target effect and improve the efficiency. The presence of a nuclease-deficient CRISPR-Cas system in several bacterial Tn7-like transposons inspires researchers to repurpose to direct the insertion of Tn7-like transposons instead of cleaving the target DNA, which will eventually limit the risk of off-target effects. Two transposon-encoded CRISPR-Cas systems have been experimentally confirmed. The first system, found in Tn7 like-transposon (Tn6677), is associated with the variant type I-F CRISPR-Cas system. The second one, found in Tn7 like-transposon (Tn5053), is related to the variant type V-K CRISPR-Cas system. This review describes the molecular and structural mechanisms of DNA targeting by the transposon-encoded type I-F CRISPR-Cas system, from assembly around the CRISPR-RNA (crRNA) to the initiation of transposition.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Structural and mechanistic insights into the inhibition of type I-F CRISPR-Cas system by anti-CRISPR protein AcrIF23
    Ren, Junhui
    Wang, Hao
    Yang, Lingguang
    Li, Feixue
    Wu, Yao
    Luo, Zhipu
    Chen, Zeliang
    Zhang, Yi
    Feng, Yue
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2022, 298 (07)
  • [22] Regulation of the Type I-F CRISPR-Cas system by CRP-cAMP and GaIM controls spacer acquisition and interference
    Patterson, Adrian G.
    Chang, James T.
    Taylor, Corinda
    Fineran, Peter C.
    NUCLEIC ACIDS RESEARCH, 2015, 43 (12) : 6038 - 6048
  • [23] Characterization of type I-F CRISPR-Cas system in Laribacter hongkongensis isolates from animals, the environment and diarrhea patients
    Wang, Ling
    Wang, Li
    Liu, Youzhao
    Wang, Zhiyun
    Chen, Qing
    Liu, Zhihua
    Hu, Jing
    INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2021, 346
  • [24] A Type I-F Anti-CRISPR Protein Inhibits the CRISPR-Cas Surveillance Complex by ADP-Ribosylation
    Niu, Yiying
    Yang, Lingguang
    Gao, Teng
    Dong, Changpeng
    Zhang, Buyu
    Yin, Peipei
    Hopp, Ann-Katrin
    Li, Dongdong
    Gan, Rui
    Wang, Hongou
    Liu, Xi
    Cao, Xueli
    Xie, Yongchao
    Meng, Xianbin
    Deng, Haiteng
    Zhang, Xiaohui
    Ren, Jie
    Hottiger, Michael O.
    Chen, Zeliang
    Zhang, Yi
    Liu, Xiaoyun
    Feng, Yue
    MOLECULAR CELL, 2020, 80 (03) : 512 - +
  • [25] Calcium-responsive kinase LadS modulates type I-F CRISPR-Cas adaptive immunity
    Zhou, Chuan-min
    Wu, Qun
    Wang, Biao
    Lin, Ping
    Wu, Min
    Yu, Xue-jie
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 546 : 155 - 161
  • [26] Research Progress on the Mechanism and Application of the Type I CRISPR-Cas System
    Yang, Peihong
    Zhang, Shuai
    Hu, Debao
    Li, Xin
    Guo, Yiwen
    Guo, Hong
    Zhang, Linlin
    Ding, Xiangbin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (23)
  • [27] Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery
    Vorontsova, Daria
    Datsenko, Kirill A.
    Medvedeva, Sofia
    Bondy-Denomy, Joseph
    Savitskaya, Ekaterina E.
    Pougach, Ksenia
    Logacheva, Maria
    Wiedenheft, Blake
    Davidson, Alan R.
    Severinov, Konstantin
    Semenova, Ekaterina
    NUCLEIC ACIDS RESEARCH, 2015, 43 (22) : 10848 - 10860
  • [28] Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration
    Sanne E. Klompe
    Phuc L. H. Vo
    Tyler S. Halpin-Healy
    Samuel H. Sternberg
    Nature, 2019, 571 : 219 - 225
  • [29] Repurposing type I-F CRISPR-Cas system as a transcriptional activation tool in human cells (vol 11, 3136, 2020)
    Chen, Yuxi
    Liu, Jiaqi
    Zhi, Shengyao
    Zheng, Qi
    Ma, Wenbin
    Huang, Junjiu
    Liu, Yizhi
    Liu, Dan
    Liang, Puping
    Zhou Songyang
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [30] Requirements for Pseudomonas aeruginosa Type I-F CRISPR-Cas Adaptation Determined Using a Biofilm Enrichment Assay
    Heussler, Gary E.
    Miller, Jon L.
    Price, Courtney E.
    Collins, Alan J.
    O'Toole, George A.
    JOURNAL OF BACTERIOLOGY, 2016, 198 (22) : 3080 - 3090