Using the Discrete Lindley Distribution to Deal with Over-dispersion in Count Data

被引:0
作者
Nguyen, Mien T. N. [1 ]
Nguyen, Man V. M. [2 ]
Le, Ngoan T. [3 ,4 ]
机构
[1] Mahidol Univ, Dept Math, Bangkok, Thailand
[2] Mahidol Univ, Fac Sci, Dept Math, CHE,Ctr Excellence Math, Bangkok, Thailand
[3] Duy Tan Univ, Int Univ Hlth & Welf, Da Nang, Vietnam
[4] Int Univ Hlth & Welf, Sch Med, Chiba, Japan
关键词
count data; generalized linear model; discrete Lindley distribution; over-dispersion; distributed nonlinear model; MORTALITY; TEMPERATURE;
D O I
10.17713/ajs.v52i3.1465
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Count data in environmental epidemiology or ecology often display substantial over-dispersion, and failing to account for the over-dispersion could result in biased estimates and underestimated standard errors. This study develops a new generalized linear model family to model over-dispersed count data by assuming that the response variable follows the discrete Lindley distribution. The iterative weighted least square is developed to fit the model. Furthermore, asymptotic properties of estimators, the goodness of fit statistics are also derived. Lastly, some simulation studies and empirical data applications are carried out, and the generalized discrete Lindley linear model shows a better performance than the Poisson distribution model.
引用
收藏
页码:96 / 113
页数:18
相关论文
共 23 条
  • [1] Abebe B., 2018, Biom. Biostat. Int. J., V1, P48
  • [2] Effects of apparent temperature on daily mortality in Lisbon and Oporto, Portugal
    Almeida, Sofia P.
    Casimiro, Elsa
    Calheiros, Jose
    [J]. ENVIRONMENTAL HEALTH, 2010, 9
  • [3] Cameron A.C., 1998, REGRESSION ANAL COUN, V53
  • [4] The lagged effect of cold temperature and wind chill on cardiorespiratory mortality in Scotland
    Carder, M
    McNamee, R
    Beverland, I
    Elton, R
    Cohen, GR
    Boyd, J
    Agius, RM
    [J]. OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 2005, 62 (10) : 702 - 710
  • [5] Crawley M. J., 2012, The R book, V2nd ed., DOI DOI 10.1002/9781118448908
  • [6] Analysis of count data with covariate dependence in both mean and variance
    Faddy, M. J.
    Smith, D. M.
    [J]. JOURNAL OF APPLIED STATISTICS, 2011, 38 (12) : 2683 - 2694
  • [7] Faraway JJ., 2004, LINEAR MODELS R, p68,101
  • [8] Distributed lag non-linear models
    Gasparrini, A.
    Armstrong, B.
    Kenward, M. G.
    [J]. STATISTICS IN MEDICINE, 2010, 29 (21) : 2224 - 2234
  • [9] Distributed Lag Linear and Non-Linear Models in R: The Package dlnm
    Gasparrini, Antonio
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2011, 43 (08): : 1 - 20
  • [10] The short-term influence of temperature on daily mortality in the temperate climate of Montreal, Canada
    Goldberg, Mark S.
    Gasparrini, Antonio
    Armstrong, Ben
    Valois, Marie-France
    [J]. ENVIRONMENTAL RESEARCH, 2011, 111 (06) : 853 - 860