Cut-in maneuver detection with self-supervised contrastive video representation learning

被引:0
|
作者
Nalcakan, Yagiz [1 ,2 ]
Bastanlar, Yalin [1 ]
机构
[1] Izmir Inst Technol, Comp Engn, TR-35430 Urla, Izmir, Turkiye
[2] TTTech Auto Turkey, TR-35260 Izmir, Turkiye
关键词
Contrastive representation learning; Vehicle maneuver classification; Driver assistance systems; VEHICLES; FRAMEWORK;
D O I
10.1007/s11760-023-02512-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The detection of the maneuvers of the surrounding vehicles is important for autonomous vehicles to act accordingly to avoid possible accidents. This study proposes a framework based on contrastive representation learning to detect potentially dangerous cut-in maneuvers that can happen in front of the ego vehicle. First, the encoder network is trained in a self supervised fashion with contrastive loss where two augmented videos of the same video clip stay close to each other in the embedding space, while augmentations from different videos stay far apart. Since no maneuver labeling is required in this step, a relatively large dataset can be used. After this self-supervised training, the encoder is fine-tuned with our cut-in/lane-pass labeled datasets. Instead of using original video frames, we simplified the scene by highlighting surrounding vehicles and ego lane. We have investigated the use of several classification heads, augmentation types, and scene simplification alternatives. The most successful model outperforms the best fully supervised model by similar to 2% with an accuracy of 92.52%.
引用
收藏
页码:2915 / 2923
页数:9
相关论文
共 50 条
  • [31] Similarity contrastive estimation for image and video soft contrastive self-supervised learning
    Julien Denize
    Jaonary Rabarisoa
    Astrid Orcesi
    Romain Hérault
    Machine Vision and Applications, 2023, 34
  • [32] Self-supervised contrastive video representation learning for construction equipment activity recognition on limited dataset
    Ghelmani, Ali
    Hammad, Amin
    AUTOMATION IN CONSTRUCTION, 2023, 154
  • [33] Video Face Clustering with Self-Supervised Representation Learning
    Sharma V.
    Tapaswi M.
    Saquib Sarfraz M.
    Stiefelhagen R.
    IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2 (02): : 145 - 157
  • [34] Self-Supervised Representation Learning for Video Quality Assessment
    Jiang, Shaojie
    Sang, Qingbing
    Hu, Zongyao
    Liu, Lixiong
    IEEE TRANSACTIONS ON BROADCASTING, 2023, 69 (01) : 118 - 129
  • [35] Video Motion Perception for Self-supervised Representation Learning
    Li, Wei
    Luo, Dezhao
    Fang, Bo
    Li, Xiaoni
    Zhou, Yu
    Wang, Weiping
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 508 - 520
  • [36] Self-supervised Sparse Representation for Video Anomaly Detection
    Wu, Jhih-Ciang
    Hsieh, He-Yen
    Chen, Ding-Jie
    Fuh, Chiou-Shann
    Liu, Tyng-Luh
    COMPUTER VISION, ECCV 2022, PT XIII, 2022, 13673 : 729 - 745
  • [37] Self-Supervised Video Representation Learning Using Improved Instance-Wise Contrastive Learning and Deep Clustering
    Zhu, Yisheng
    Shuai, Hui
    Liu, Guangcan
    Liu, Qingshan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6741 - 6752
  • [38] Boost Supervised Pretraining for Visual Transfer Learning: Implications of Self-Supervised Contrastive Representation Learning
    Sun, Jinghan
    Wei, Dong
    Ma, Kai
    Wang, Liansheng
    Zheng, Yefeng
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 2307 - 2315
  • [39] Mixing up contrastive learning: Self-supervised representation learning for time series
    Wickstrom, Kristoffer
    Kampffmeyer, Michael
    Mikalsen, Karl Oyvind
    Jenssen, Robert
    PATTERN RECOGNITION LETTERS, 2022, 155 : 54 - 61
  • [40] Self-supervised Graph-level Representation Learning with Adversarial Contrastive Learning
    Luo, Xiao
    Ju, Wei
    Gu, Yiyang
    Mao, Zhengyang
    Liu, Luchen
    Yuan, Yuhui
    Zhang, Ming
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (02)