On a Subclass of Analytic Functions Satisfying a Differential Inequality

被引:1
作者
Ali, Rosihan M. M. [1 ]
Chung, Yao Liang [1 ]
Lee, See Keong [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
关键词
Analytic functions; univalent functions; integral representation; coefficient estimate; sufficient condition; UNIVALENT-FUNCTIONS;
D O I
10.1007/s00009-023-02326-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A denote the class of all functions f analytic in the unit disc D := {z is an element of C : |z| < 1} with the normalization f (0) = 0 = f'(0) - 1. For lambda is an element of (0, 1] and complex mu, a subclass of functions f in A satisfying |f'(z)(z/f(z))(2) - mu| < lambda on D is considered. The conditions on lambda and mu such that the functions in this subclass to be univalent are given. It is shown that the subclass is preserved under rotation, dilation and conjugation. A necessary and sufficient condition for analytic functions to be in this subclass is given. With this, the sharp second coefficient bound and the growth theorem are determined.
引用
收藏
页数:17
相关论文
共 18 条
[1]  
Aksentv LA., 1958, Izv. Vys. Uebn. Zaved. Matematika, V3, P3
[2]  
Ali RM, 2015, B MALAYS MATH SCI SO, V38, P1705, DOI 10.1007/s40840-015-0115-3
[3]  
Fournier R., 2007, Complex Var. Elliptic Equ, V52, P1, DOI [DOI 10.1080/17476930600780149, 10.1080/17476930600780149]
[4]   2 THEOREMS ON SCHLICHT FUNCTIONS [J].
FRIEDMAN, B .
DUKE MATHEMATICAL JOURNAL, 1946, 13 (02) :171-177
[5]   Univalent Functions with Half-Integral Coefficients [J].
Hiranuma, Naoki ;
Sugawa, Toshiyuki .
COMPUTATIONAL METHODS AND FUNCTION THEORY, 2013, 13 (01) :133-151
[6]   On Classes of Meromorphic Locally Univalent Functions Defined by Differential Inequalities [J].
Lee, See Keong ;
Ponnusamy, Saminathan ;
Wirths, Karl-Joachim .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (01) :149-158
[7]  
Obradovi M., 2001, Computational Methods and Function Theory, V44, P173
[8]   Criteria for univalent functions in the unit disk [J].
Obradovic, M. ;
Ponnusamy, S. .
ARCHIV DER MATHEMATIK, 2013, 100 (02) :149-157
[9]   STARLIKENESS AND CERTAIN CLASS OF RATIONAL FUNCTIONS [J].
OBRADOVIC, M .
MATHEMATISCHE NACHRICHTEN, 1995, 175 :263-268
[10]  
Obradovic M., 2011, P 21 ANN C JAMMU MAT, P11