Optimal Utilization of Charging Resources of Fast Charging Station with Opportunistic Electric Vehicle Users

被引:5
|
作者
Konara, Konara Mudiyanselage Sandun Y. [1 ]
Kolhe, Mohan Lal [1 ]
Ulltveit-Moe, Nils [1 ]
Balapuwaduge, Indika A. M. [1 ]
机构
[1] Univ Agder, Fac Engn & Sci, POB 422, N-4604 Kristiansand, Norway
来源
BATTERIES-BASEL | 2023年 / 9卷 / 02期
关键词
electric vehicles; DC fast charging; fast-charging station; performance assessment of EV charging; hierarchical charging control; MANAGEMENT; BATTERIES; MACHINE; SYSTEM;
D O I
10.3390/batteries9020140
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The key challenge with the rapid proliferation of electric vehicles (EVs) is to optimally manage the available energy charging resources at EV fast-charging stations (FCSs). Furthermore, the rapid deployment of fast-charging stations provides a viable solution to the potential driving range anxiety and charging autonomy. Costly grid reinforcements due to extra load caused by fast charging can be omitted using a dedicated energy storage and/or renewable energy system at the FCS. The energy supply and fixed number of EV supply equipment (EVSE) are considered as the limited charging resources of FCS. Amidst various uncertainties associated with the EV charging process, how to optimally utilize limited charging resources with opportunistic ultra-fast charging EV users (UEVs) is studied in this work. This work proposes resource allocation and charging coordination strategies that facilitate UEVs to dynamically exploit these limited charging resources with defined liabilities when pre-scheduled users (SEVs) do not occupy them to utilize limited charging resources maximally. Moreover, the proposed dynamic charging coordination strategies are analyzed with a Monte Carlo simulation (MCS). The presented numerical results reveal that the major drawbacks of under-utilization of limited charging resources by SEVs can be significantly improved through dynamic charging resource allocation and coordination along with UEVs. With the proposed charging coordination strategies in this study, the maximum charging resource utilization of considered FCS with 10 EVSE has been improved to 90%, which bounds to 78% only with SEVs.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Emerging energy sources for electric vehicle charging station
    Arshdeep Singh
    Shimi Sudha Letha
    Environment, Development and Sustainability, 2019, 21 : 2043 - 2082
  • [32] Optimal sizing and smart charging abilities of electric vehicle charging station by considering quality of service using hybrid technique
    Palani, Velmurugan
    Gomathi, Subbiah
    Aruna, Ponnupandian
    Veeramani, Vasan Prabhu
    Manathunainathan, Veeramani
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022,
  • [33] Allocation of electric vehicle charging station considering uncertainties
    Pal, Arnab
    Bhattacharya, Aniruddha
    Chakraborty, Ajoy Kumar
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2021, 25
  • [34] Optimal Playing of Electric Vehicle Charging Stations
    Brenna, Morris
    Dolara, Alberto
    Leva, Sonia
    Longo, Michela
    Zaninelli, Dario
    2017 IEEE 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA), 2017, : 210 - 215
  • [35] Optimal PV Sizing Scheme for the PV-Integrated Fast Charging Station
    Chen, Nan
    Wang, Miao
    Shen, Xuemin
    2016 8TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP), 2016,
  • [36] Optimal Scheduling of Electric Vehicle Charging at Geographically Dispersed Charging Stations with Multiple Charging Piles
    Sowmya R
    V. Sankaranarayanan
    International Journal of Intelligent Transportation Systems Research, 2022, 20 : 672 - 695
  • [37] Optimal Scheduling of Electric Vehicle Charging at Geographically Dispersed Charging Stations with Multiple Charging Piles
    Sowmya, R.
    Sankaranarayanan, V
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2022, 20 (03) : 672 - 695
  • [38] Stackelberg Game Based Energy and Reserve Management for a Fast Electric Vehicle Charging Station
    Zhao, Tianyang
    Pan, Xuewei
    Yao, Shuhan
    Wang, Peng
    2017 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2017, : 1417 - 1424
  • [39] Optimal Sizing of Renewable Energy Powered Hydrogen and Electric Vehicle Charging Station (HEVCS)
    Palanisamy, Sekar
    Lala, Himadri
    IEEE ACCESS, 2024, 12 : 48239 - 48254
  • [40] Bounds for Optimal Control of a Regional Plug-In Electric Vehicle Charging Station System
    Sarikprueck, Piampoom
    Lee, Wei-Jen
    Kulvanitchaiyanunt, Asama
    Chen, Victoria C. P.
    Rosenberger, Jay
    2017 IEEE/IAS 53RD INDUSTRIAL AND COMMERCIAL POWER SYSTEMS TECHNICAL CONFERENCE (I&CPS), 2017,