Calculation Method of Three-Dimensional Slope Safety Factor with Simultaneous Change of Height and Angle

被引:2
|
作者
Zhang, Chenxi [1 ,2 ,3 ]
Qiu, Shili [2 ,4 ]
Zeng, Zhiquan [5 ]
Zhang, Chuanqing [2 ,4 ]
Chen, Sili [1 ]
Zhou, Hui [2 ,4 ]
Cheng, Shuai [3 ]
机构
[1] Shenyang Univ Technol, Shenyang 110870, Peoples R China
[2] Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
[3] Shandong Univ, Geotech & Struct Engn Res Ctr, Jinan 250061, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] PowerChina Huadong Engn Corp Ltd, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
Three-dimensional slope; Slope height; Slope base angle; Limit equilibrium method; Safety factor; LIMIT EQUILIBRIUM-ANALYSIS; STABILITY ANALYSIS; FORCE;
D O I
10.1007/s10706-023-02392-x
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The simultaneous variation of slope height and slope feet angle is a significant feature of three-dimensional slopes. Expanding the safety factor of two-dimensional slopes to three-dimensional is the most popular approach for calculating the safety factor of three-dimensional slopes. In this approach, however, the influence of three-dimensional effects is seldom considered. To correct this oversight, a novel calculation method for the safety factor of three-dimensional homogeneous cohesive soil slopes is proposed, involving 2 key parameters: the variation rates of slope height and slope feet angle. The stress state of the soil column on its bottom surface is simplified by the synthesis vectors of the tangent and normal vectors, which are determined by different shovel angles on each side of the soil column. By using a three-dimensional limit equilibrium method with a shear exertion coefficient, the safety factor of a cohesive soil pit slope at the site of a tunnel entrance, with synchronously-varied height and feet angle, in the North Hubei Water Transfer Engineering is calculated. The calculation results are then compared with those obtained by existing literature and numerical simulation method. This comparison reveals that the deviation is small, and the shape of sliding surface is basically the same as that of numerical simulation method, which reflects the strong rationality of the method in this paper. Furthermore, by analyzing the impact of 2 key parameters, it can be seen that the slope safety factor F-s may have same values under different k(1) and k(2) combinations. And meanwhile, the three-dimensional characteristics of slopes in different degrees may have opposite effects on F-s.
引用
收藏
页码:2091 / 2104
页数:14
相关论文
empty
未找到相关数据