Fully automated clinical target volume segmentation for glioblastoma radiotherapy using a deep convolutional neural network

被引:2
|
作者
Sadeghi, Sogand [1 ]
Farzin, Mostafa [2 ]
Gholami, Somayeh [3 ]
机构
[1] Univ Mazandaran, Fac Sci, Dept Nucl Phys, Babolsar, Iran
[2] Univ Tehran Med Sci, Neurosci Inst, Brain & Spinal Cord Injury Res Ctr, Tehran, Iran
[3] Univ Arkansas Med Sci, Dept Radiat Oncol, Little Rock, AR 72205 USA
关键词
deep learning; convolutional neural networks; brain tumour segmentation; clinical target volume; treat-ment planning; BRAIN-TUMOR SEGMENTATION; DELINEATION; ORGANS; ATLAS; HEAD;
D O I
10.5114/pjr.2023.124434
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Target volume delineation is a crucial step prior to radiotherapy planning in radiotherapy for glioblastoma. This step is performed manually, which is time-consuming and prone to intra-and inter-rater variabilities. Therefore, the purpose of this study is to evaluate a deep convolutional neural network (CNN) model for automatic segmenta-tion of clinical target volume (CTV) in glioblastoma patients.Material and methods: In this study, the modified Segmentation-Net (SegNet) model with deep supervision and re-sidual-based skip connection mechanism was trained on 259 glioblastoma patients from the Multimodal Brain Tumour Image Segmentation Benchmark (BraTS) 2019 Challenge dataset for segmentation of gross tumour volume (GTV). Then, the pre-trained CNN model was fine-tuned with an independent clinical dataset (n = 37) to perform the CTV segmentation. In the process of fine-tuning, to generate a CT segmentation mask, both CT and MRI scans were simultaneously used as input data. The performance of the CNN model in terms of segmentation accuracy was evaluated on an independent clinical test dataset (n = 15) using the Dice Similarity Coefficient (DSC) and Hausdorff distance. The impact of auto-segmented CTV definition on dosimetry was also analysed.Results: The proposed model achieved the segmentation results with a DSC of 89.60 +/- 3.56% and Hausdorff distance of 1.49 +/- 0.65 mm. A statistically significant difference was found for the Dmin and Dmax of the CTV between manually and automatically planned doses. Conclusions: The results of our study suggest that our CNN-based auto-contouring system can be used for segmenta-tion of CTVs to facilitate the brain tumour radiotherapy workflow.
引用
收藏
页码:E31 / E40
页数:10
相关论文
共 50 条
  • [21] Fully-Automated Segmentation of Nasopharyngeal Carcinoma on Dual-Sequence MRI Using Convolutional Neural Networks
    Ye, Yufeng
    Cai, Zongyou
    Huang, Bin
    He, Yan
    Zeng, Ping
    Zou, Guorong
    Deng, Wei
    Chen, Hanwei
    Huang, Bingsheng
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [22] Fully automated carbonate petrography using deep convolutional neural networks
    Koeshidayatullah, Ardiansyah
    Morsilli, Michele
    Lehrmann, Daniel J.
    Al-Ramadan, Khalid
    Payne, Jonathan L.
    MARINE AND PETROLEUM GEOLOGY, 2020, 122 (122)
  • [23] Wound image segmentation using deep convolutional neural network
    Kang, Hyunyoung
    Seo, Kyungdeok
    Lee, Sena
    Oh, Byung Ho
    Yang, Sejung
    PHOTONICS IN DERMATOLOGY AND PLASTIC SURGERY 2023, 2023, 12352
  • [24] LUNG LOBE SEGMENTATION WITH AUTOMATED QUALITY ASSURANCE USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Ram, Sundaresh
    Humphries, Stephen M.
    Lynch, David A.
    Galban, Craig J.
    Hatt, Charles R.
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING WORKSHOPS (IEEE ISBI WORKSHOPS 2020), 2020,
  • [25] Mitochondria Segmentation in Electron Microscopy Volumes using Deep Convolutional Neural Network
    Oztel, Ismail
    Yolcu, Gozde
    Ersoy, Ilker
    White, Tommi
    Bunyak, Filiz
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 1195 - 1200
  • [26] Automated segmentation of an intensity calibration phantom in clinical CT images using a convolutional neural network
    Uemura, Keisuke
    Otake, Yoshito
    Takao, Masaki
    Soufi, Mazen
    Kawasaki, Akihiro
    Sugano, Nobuhiko
    Sato, Yoshinobu
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (11) : 1855 - 1864
  • [27] Automated segmentation of an intensity calibration phantom in clinical CT images using a convolutional neural network
    Keisuke Uemura
    Yoshito Otake
    Masaki Takao
    Mazen Soufi
    Akihiro Kawasaki
    Nobuhiko Sugano
    Yoshinobu Sato
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 1855 - 1864
  • [28] A Fully Automated Deep Learning Network for Brain Tumor Segmentation
    Yogananda, Chandan Ganesh Bangalore
    Shah, Bhavya R.
    Vejdani-Jahromi, Maryam
    Nalawade, Sahil S.
    Murugesan, Gowtham K.
    Yu, Frank F.
    Pinho, Marco C.
    Wagner, Benjamin C.
    Emblem, Kyrre E.
    Bjornerud, Atle
    Fei, Baowei
    Madhuranthakam, Ananth J.
    Maldjian, Joseph A.
    TOMOGRAPHY, 2020, 6 (02) : 186 - 193
  • [29] Improved accuracy of auto-segmentation of organs at risk in radiotherapy planning for nasopharyngeal carcinoma based on fully convolutional neural network deep learning
    Peng, Yinglin
    Liu, Yimei
    Shen, Guanzhu
    Chen, Zijie
    Chen, Meining
    Miao, Jingjing
    Zhao, Chong
    Deng, Jincheng
    Qi, Zhenyu
    Deng, Xiaowu
    ORAL ONCOLOGY, 2023, 136
  • [30] Fully automated pelvic bone segmentation in multiparameteric MRI using a 3D convolutional neural network
    Liu, Xiang
    Han, Chao
    Wang, He
    Wu, Jingyun
    Cui, Yingpu
    Zhang, Xiaodong
    Wang, Xiaoying
    INSIGHTS INTO IMAGING, 2021, 12 (01)