Constructive Approximation on Graded Meshes for the Integral Fractional Laplacian

被引:6
作者
Borthagaray, Juan Pablo [1 ,2 ]
Nochetto, Ricardo H. [3 ]
机构
[1] Univ Republ, Dept Matemat & Estadist Litoral, Salto, Uruguay
[2] Univ Republica, Ctr Matemat, Montevideo, Uruguay
[3] Univ Maryland, Inst Phys Sci & Technol, Dept Math, College Pk, MD 20742 USA
关键词
integral fractional Laplacian; graded Meshes; greedy algorithm; ARONSZAJN-SLOBODECKIJ NORM; BOUNDARY-ELEMENT METHODS; ELLIPTIC PROBLEMS; NUMERICAL-METHODS; REGULARITY; INTERPOLATION; LOCALIZATION; DOMAINS;
D O I
10.1007/s00365-023-09617-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the homogeneous Dirichlet problem for the integral fractional Laplacian (-delta)(s). We prove optimal Sobolev regularity estimates in Lipschitz domains pro-vided the solution is C-s up to the boundary. We present the construction of graded bisection meshes by a greedy algorithm and derive quasi-optimal convergence rates for approximations to the solution of such a problem by continuous piecewise linear functions. The nonlinear Sobolev scale dictates the relation between regularity and approximability.
引用
收藏
页码:463 / 487
页数:25
相关论文
共 32 条
[1]   Obstacle problems for integro-differential operators: Higher regularity of free boundaries [J].
Abatangelo, Nicola ;
Ros-Oton, Xavier .
ADVANCES IN MATHEMATICS, 2020, 360
[2]   A short FE implementation for a 2d homogeneous Dirichlet problem of a fractional Laplacian [J].
Acosta, Gabriel ;
Bersetche, Francisco M. ;
Pablo Borthagaray, Juan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) :784-816
[3]   A FRACTIONAL LAPLACE EQUATION: REGULARITY OF SOLUTIONS AND FINITE ELEMENT APPROXIMATIONS [J].
Acosta, Gabriel ;
Pablo Borthagaray, Juan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :472-495
[4]   Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver [J].
Ainsworth, Mark ;
Glusa, Christian .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 :4-35
[5]  
[Anonymous], 2002, Serdica Math. J.
[6]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[7]   Numerical methods for fractional diffusion [J].
Bonito, Andrea ;
Borthagaray, Juan Pablo ;
Nochetto, Ricardo H. ;
Otarola, Enrique ;
Salgado, Abner J. .
COMPUTING AND VISUALIZATION IN SCIENCE, 2018, 19 (5-6) :19-46
[8]   LOCAL ENERGY ESTIMATES FOR THE FRACTIONAL LAPLACIAN [J].
Borthagaray, Juan Pablo ;
Leykekhman, Dmitriy ;
Nochetto, Ricardo H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (04) :1918-1947
[9]   Weighted Sobolev regularity and rate of approximation of the obstacle problem for the integral fractional Laplacian [J].
Borthagaray, Juan Pablo ;
Nochetto, Ricardo H. ;
Salgado, Abner J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (14) :2679-2717
[10]  
Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439